chứng minh 3 số lẻ liên tiếp luôn có 1 số chia hết cho 3
Chứng minh rằng:
a.Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3.
b.Trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 3.
c.Trong 3 số lẻ liên tiếp luôn có 1 số chia hết cho 3.
chứng minh rằng tổng 3 số tự nhiên liên tiếp luôn chia hết cho các số lẻ
Chưa có ai trả lời câu hỏi này, hãy gửi một câu trả lời để giúp YBIUBHIB giải bài toán này.
Gọi 3 số tự nhiên liên tiếp là a,a+1,a+2 và số lẻ đó là 2k+ 1
Ta có :
a + a + 1 + a + 2 = ( a + a + a ) + ( 1 +2 )
= 3a + 3
=> Tới đây sai đề
Chứng minh rằng
Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Trong 4 số tự nhiên liên tiếp có 1 sô chia hết cho 4
Tổng 3 số tự nhiên liên tiếp chia hết cho 3
Tổng 3 số chẵn liên tiếp chia hết cho 6
Tổng 2 số lẻ liên tiếp chia hết cho 4
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
gọi 3 số tự liên tiếp đó là a;a+1;a+2
ta có : a+[a+1]+[a+2]
=[a+a+a]+[1+2]
=3a + 3
=3 x [a+1] chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3.
Cho 2 số nguyên tố lẻ liên tiếp lớn hơn 3.Chứng minh rằng luôn tồn tại 1 hợp số ở giữa 2 số nguyên tố đó chia hết cho 6.
Chứng minh tích năm số lẻ liên tiếp luôn chia hết cho 5.
Gọi tích 5 số đó là:
\(\left(2k+1\right)\left(2k+3\right)\left(2k+5\right)\left(2k+7\right)\left(2k+9\right)\)
Trong 5 số này ta có:
Phải có 1 số chia hết cho 5
Vì trong dãy 5 số lẻ liên tiếp là:
\(\left(1;3;5;7;9\right);\left(9;11;13;15;17\right);...\)
Nên tích của 5 số lẻ liên tiếp phải ⋮ 5
Gọi \(\left(2k+1\right);\left(2k+3\right);\left(2k+5\right);\left(2k+7\right);\left(2k+9\right)\) là 5 số lẻ liên tiếp \(\left(k\in N\right)\)
Tích của 5 số trên là :
\(\left(2k+1\right).\left(2k+3\right).\left(2k+5\right).\left(2k+7\right).\left(2k+9\right)=\overline{.....5}\) (vì các số lẻ này có số tận cùng bằng 5)
\(\Rightarrow\left(2k+1\right).\left(2k+3\right).\left(2k+5\right).\left(2k+7\right).\left(2k+9\right)⋮5\left(dpcm\right)\)
1. Chứng minh rằng
a) (45+99+180) chia hết cho 2
b) (125+350+235) chia hết cho 5
c) (5124-504) chia hết cho 4
d) (9226-1435) chia hết cho 7
2.Chứng minh rằng
a) Trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
b) Trong ba số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
c) Trong bốn số tự nhiên liên tiếp luôn có 1 số chia hết cho 4
a. Ta có:
45 + 99 + 180 = 324
Vì: Số tận cùng của nó là số 4
=> 324 chia hết cho 2
Bài 1
chỉ cần tính ra kết quả là đc
Bài 2
Giả sử một số tự nhiên bất kì = n
=> 2 số tự nhiên liên tiếp là n và n+1
- Với n = 2k+1=>n+1 = 2k+2 chia hết 2
- Với n = 2k => n chia hết 2
Vậy trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết 2
Chứng minh rằng :
a. Trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3.
b. Trong 4 số tự nhiên liên tiếp luôn có một số chia hết cho 4.
c. Nêu kết luận tổng quát từ câu a và câu b
d. Chứng minh rằng : tích của hai số chẵn liên tiếp chia hết cho 8
1.Chứng minh tích 2 số tự nhiên liên tiếp chia hết cho 2
2.Chứng minh tích 3 số lẻ liên tiếp chia hết cho 3
3.tìm N,biết:
(N+6)chia hết cho (N+2)
Chứng minh trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
3 số tự nhiên liên tiếp có dạng a ; a + 1 ;a + 2
- Nếu a = 3k thì a chia hết cho 3
- Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.( k +1 ) chia hết cho 3
- Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3.( k +1 ) chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
3 số tự nhiên liên tiếp có dạng a ; a + 1 ;a + 2
- Nếu a = 3k thì a chia hết cho 3
- Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.( k +1 ) chia hết cho 3
- Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3.( k +1 ) chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
ủng hộ nha