Gọi tích 5 số đó là:
\(\left(2k+1\right)\left(2k+3\right)\left(2k+5\right)\left(2k+7\right)\left(2k+9\right)\)
Trong 5 số này ta có:
Phải có 1 số chia hết cho 5
Vì trong dãy 5 số lẻ liên tiếp là:
\(\left(1;3;5;7;9\right);\left(9;11;13;15;17\right);...\)
Nên tích của 5 số lẻ liên tiếp phải ⋮ 5
Gọi \(\left(2k+1\right);\left(2k+3\right);\left(2k+5\right);\left(2k+7\right);\left(2k+9\right)\) là 5 số lẻ liên tiếp \(\left(k\in N\right)\)
Tích của 5 số trên là :
\(\left(2k+1\right).\left(2k+3\right).\left(2k+5\right).\left(2k+7\right).\left(2k+9\right)=\overline{.....5}\) (vì các số lẻ này có số tận cùng bằng 5)
\(\Rightarrow\left(2k+1\right).\left(2k+3\right).\left(2k+5\right).\left(2k+7\right).\left(2k+9\right)⋮5\left(dpcm\right)\)