Những câu hỏi liên quan
DT
Xem chi tiết
NT
30 tháng 3 2021 lúc 20:35

Ta có: \(A=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)

\(=\dfrac{2009}{1}+\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}\)

\(=2009\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2008}\right)\)

Bình luận (1)
LT
Xem chi tiết
NT
23 tháng 1 2022 lúc 11:48

\(=\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1\)

\(=\dfrac{2009}{2}+\dfrac{2009}{3}+...+\dfrac{2009}{2008}+\dfrac{2009}{2009}\)

\(=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2009}\right)\)

Bình luận (2)
TK
Xem chi tiết
MV
6 tháng 3 2019 lúc 21:53

\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)

\(A=\left(1-\frac{1}{2007}\right)+\left(1-\frac{1}{2008}\right)+\left(1-\frac{1}{2009}\right)+\left(1+\frac{3}{2006}\right)\)

\(A=1-\frac{1}{2007}+1-\frac{1}{2008}+1-\frac{1}{2009}+1+\frac{3}{2006}\)

\(A=\left(1+1+1+1\right)-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}\right)\)

\(A=4-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}\right)\)

Ta có: \(\left\{{}\begin{matrix}\frac{1}{2007}< \frac{1}{2006}\\\frac{1}{2008}< \frac{1}{2006}\\\frac{1}{2009}< \frac{1}{2006}\end{matrix}\right.\Rightarrow\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}< \frac{1}{2006}+\frac{1}{2006}+\frac{1}{2006}=\frac{3}{2006}\)

\(\Rightarrow\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}< 0\)

\(\Rightarrow4-\left(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}-\frac{3}{2006}\right)>4\)

hay \(A>4\)

\(\text{Vậy A>4}\)

Bình luận (0)
YA
Xem chi tiết
TH
29 tháng 11 2020 lúc 22:17

\(B=1+\left(\frac{2007}{2}+1\right)+\left(\frac{2006}{3}+1\right)+...+\left(\frac{1}{2008}+1\right)=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\Rightarrow\frac{A}{B}=\frac{1}{2009}\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
HL
19 tháng 11 2017 lúc 10:20

Ta có :

\(A=\dfrac{\dfrac{2008}{1}+\dfrac{2007}{2}+....................+\dfrac{2}{2007}+\dfrac{1}{2008}}{\dfrac{1}{2}+\dfrac{1}{3}+....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\left(\dfrac{2007}{2}+1\right)+.....+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...............+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{\dfrac{2009}{2}+...................+\dfrac{2009}{2007}+\dfrac{2009}{2008}+\dfrac{2009}{2009}}{\dfrac{1}{2}+\dfrac{1}{3}+.....................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=\dfrac{2009\left(\dfrac{1}{2}+..........................+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+............................+\dfrac{1}{2008}+\dfrac{1}{2009}}\)

\(\Rightarrow A=2009\)

Bình luận (0)
WW
Xem chi tiết
MS
6 tháng 3 2018 lúc 23:42

Đặt: \(L_2=\dfrac{2007}{1}+\dfrac{2006}{2}+\dfrac{2005}{3}+...+\dfrac{2}{2006}+\dfrac{1}{2007}\)

\(L_2=1+\left(\dfrac{2006}{2}+1\right)+\left(\dfrac{2005}{3}+1\right)+...+\left(\dfrac{2}{2006}+1\right)+\left(\dfrac{1}{2007}+1\right)\)

\(L_2=\dfrac{2008}{2008}+\dfrac{2008}{2}+\dfrac{2008}{3}+...+\dfrac{2008}{2006}+\dfrac{2008}{2007}\)

\(L_2=2008\left(\dfrac{1}{2}+\dfrac{1}{3}+..+\dfrac{1}{2006}+\dfrac{1}{2007}+\dfrac{1}{2008}\right)\)

\(\dfrac{L_1}{L_2}=\dfrac{1}{2008}\)

Bình luận (0)
ND
Xem chi tiết
BN
26 tháng 2 2018 lúc 13:57

\(B=\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}\)

\(B=1+\left(\dfrac{2007}{2}+1\right)+\left(\dfrac{2006}{3}+1\right)+...+\left(\dfrac{2}{2007}+1\right)+\left(\dfrac{1}{2008}+1\right)\)

\(B=\dfrac{2009}{2009}+\dfrac{2009}{2}+\dfrac{2009}{3}+..+\dfrac{2009}{2007}+\dfrac{2009}{2008}\)

\(B=2009\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)\)

\(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{2009\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}\right)}\)

\(\dfrac{A}{B}=\dfrac{1}{2009}\)

Bình luận (0)
ST
Xem chi tiết
PT
21 tháng 4 2021 lúc 9:35

Hỏi đáp Toán

Bình luận (0)
HM
Xem chi tiết
NT
23 tháng 10 2023 lúc 12:34

\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)

=>\(\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)

=>\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)

=>x-2010=0

=>x=2010

Bình luận (0)
KL
23 tháng 10 2023 lúc 12:47

(x - 1)/2009 + (x - 2)/2008 = (x - 3)/2007 + (x - 4)/2006

(x - 1)/2009 - 1 + (x - 2)/2008 - 1 = (x - 3)/2007 - 1 + (x - 4)/2006 - 1

(x - 2010)/2009 + (x - 2010)/2008 = (x - 2010)/2007 + (x - 2010)/2006

(x - 2010)/2009 + (x - 2010)/2008 - (x - 2010)/2007 - (x - 2010)/2006 = 0

(x - 2010).(1/2009 + 1/2008 - 1/2007 - 1/2006) = 0

x - 2010 = 0

x = 2010

Bình luận (0)
NT
23 tháng 10 2023 lúc 13:04

\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\\\Rightarrow\dfrac{x-1}{2009}+\dfrac{x-2}{2008}-\dfrac{x-3}{2007}-\dfrac{x-4}{2006}=0\\\Rightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)-\left(\dfrac{x-3}{2007}-1\right)-\left(\dfrac{x-4}{2006}-1\right)=0 \\ \Rightarrow\dfrac{x-1-2009}{2009}+\dfrac{x-2-2008}{2008}-\dfrac{x-3-2007}{2007}-\dfrac{x-4-2006}{2006}=0\\ \Rightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\\\Rightarrow \left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\\ \)
Mà \(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\)
\(\Rightarrow x-2010=0\\ \Rightarrow x=2010\)

Vậy \(x=2010\)

 

Bình luận (0)