8x2-2x-3=
8x2+10x-3=
10x2-4x-6
Giải phương trình sau:
b)2( x +1) = 5x - 7
c) 3 - 4x(25 - 2x) = 8x2 + x - 300
d) \(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)
`b,2(x+1)=5x-7`
`=>2x+2=5x-7`
`=>3x=9`
`=>x=3`
`c,3-4x(25-2x)=8x^2+x-300`
`<=>3-100x+8x^2=8x^2+x-300`
`<=>101x=303`
`<=>x=3`
`d,(10x+3)/12=1+(6+8x)/9`
`<=>(10x+3)/12=(8x+15)/9`
`<=>30x+9=32x+60`
`<=>2x=-51`
`<=>x=-51/2`
ai giúp ạ
Phân tích đa thức thành nhân tử
a. 8x2 - 8xy - 4x + 4y b. x3 + 10x2 + 25x - xy2
c. x2 + x - 6 d. 2x2 + 4x - 16
`a) 8x^2 - 8xy - 4x + 4y`
`= 8x ( x - y ) - 4 ( x - y )`
`= ( x - y ) ( 8x - 4 )`
__________________________
`b) x^3 + 10x^2 + 25x - xy^2`
`=x ( x^2 + 10x + 25 ) - xy^2`
`= x ( x + 5 )^2 - xy^2`
`= x [ ( x + 5 )^2 - y^2 ]`
`= x ( x + 5 - y ) ( x + 5 + y )`
________________________________
`c) x^2 + x - 6`
`= x^2 + 3x - 2x - 6`
`= x ( x + 3 ) - 2 ( x + 3 )`
`= ( x + 3 ) ( x - 2 )`
_______________________________
`d) 2x^2 + 4x - 16`
`= 2x^2 - 4x + 8x - 16`
`= 2x ( x - 2 ) + 8 ( x - 2 )`
`= ( x - 2 ) ( 2x + 8 )`
a) x2 + xy –x – y = x(x + y) – (x + y) = (x + y)(x -1 ).
b) a2 – b2 + 8a + 16 = (a2 + 8a + 16) – b2 = (a + 4)2 – b2
= (a + 4 – b)(a + 4 + b).
tui chỉ làm dc này thui
\(a,=8x\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(8x-4\right)\)
1. x2+3x-8=0; 2). 8x2-2x-5=0 3). 2x2+7x+6=0 4). 3x2 -10x+8=0
5). 2x(8x-1)2(4x-1)=9
1. Phân tích thành nhân tử
a) x2 + 7x + 10; b) x2 – 21x + 110; c) 3x2 + 12x + 9; d) 2ax2 - 16ax + 30a.
2. Phân tích thành nhân tử
a) x2 + x – 6; b) x2 – 2x – 15; c) 4x2 - 12x - 160; d) 5x2y - 10xy - 15y.
3. Phân tích thành nhân tử
a) x2 – xy – 20y2 ; b) 3x4 + 6x2y2 – 45y4 ; c) 2bx2 – 4bxy - 70y2
4. Giải phương trình
a) x2 + x = 72; b) 3x2 – 6x = 24 c) 5x3 – 10x2 = 120x.
5. Phân tích thành nhân tử
a) 3x2 -11x + 6; b) 8x2 + 10x – 3 ; c) 8x2 -2x -1 .
bài 1 Phân tích đa thức thành nhân tử ( bằng kĩ thuật bổ sung hằng đẳng thức )
1, 2x2 - 3x - 2
2,4x2 - 7x - 2
3, 6x2 + 7x - 3
bài 2 phân tích thành nhân tử ( bằng kĩ thuật tách hạng tử )
1, 3x2 + 7x - 6
2, 8x2 - 2x - 3
3, -8x2 + 5x + 3
4, -10x2 + 11x + 6
\(1,2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
\(2,4x^2-7x-2\)
\(=4x^2-8x+x-2\)
\(=4x\left(x-2\right)+x-2\)
\(\left(4x+1\right)\left(x-2\right)\)
Số nghiệm của phương trình 2 x 2 + 2 x - 9 = ( x 2 - x - 3 ) . 8 x 2 + 3 x - 6 + ( x 2 + 3 x - 6 ) . 8 x 2 - x - 3 là:
A. 1
B. 3
C. 2
D. 4
Phân tích thành nhân tử
2 + x )2 + 4x2 + 4x - 12
2 + 8x + 7)(x2 + 8x + 15) + 15
8x2 + 10x - 3
a: (x^2+x)^2+4x^2+4x-12
=(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
b: =(x^2+8x)^2+22(x^2+8x)+105+15
=(x^2+8x)^2+22(x^2+8x)+120
=(x^2+8x+10)(x^2+8x+12)
=(x^2+8x+10)(x+2)(x+6)
c: =8x^2+12x-2x-3
=(2x+3)(4x-1)
Phân tích thành nhân tử
a,(x2 + x )2 + 4x2 + 4x - 12
b, (x2 + 8x + 7)(x2 + 8x + 15) + 15
c,8x2 + 10x - 3
a: =(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
b: =(x^2+8x)^2+22(x^2+8x)+120
=(x^2+8x+12)(x^2+8x+10)
=(x+2)(x+6)(x^2+8x+10)
c: =8x^2+12x-2x-3
=(2x+3)(4x-1)
a) (x - 1) - (2x - 1) = 9 - x
b) 3 - 4x (25 - 2x) = 8x2
a) (x - 1) - (2x - 1) = 9 - x
<=> x - 1 - 2x + 1 = 9 - x
<=> x - 2x + x = 9 + 1 - 1
<=> 0x = 9 (vô lý vì 0x = 0 với mọi x)
Vậy PT vô nghiệm
b) 3 - 4x. (25 - 2x) = 8x2
<=> 3 - 100x + 8x2 = 8x2
<=> 3 - 100x = 0
<=> -100x = -3
<=> 100x = 3
\(\Leftrightarrow x=\dfrac{3}{100}\)
Vậy: \(S=\left\{\dfrac{3}{100}\right\}\)
a) (x-1) - (2x-1) = 9-x
<=> x - 1 - 2x + 1= 9-x
<=> -x = 9-x
<=> -x + x = 9
<=> 0 = 9 ( sai )
Vậy tập nghiệm S ={\(\varnothing\)}
b) 3 - 4x(25 - 2x) = 8x2
<=> 3 - 100x + 8x2 = 8x2
<=> 3 = 100x
<=> \(\dfrac{3}{100}\)= x = 0,03
Vập tập nghiệm S ={0,03}
Bài 5: Tính giá trị các biểu thức sau
a) P(x)=x14- 10x13 + 10x12 -10x11+...+ 10x2 -10x +10 tại x=9
b) Q(x)= x15 - 8x14 + 8x3 - 8x12 +... - 8x2 +8x -5 tại x =7
a)
\(P=\left(x^{14}-9x^{13}\right)-\left(x^{13}-9x^{12}\right)+\left(x^{12}-9x^{11}\right)-...+\left(x^2-9x\right)-\left(x-9\right)+1\)
\(=x^{13}\left(x-9\right)-x^{12}\left(x-9\right)+x^{11}\left(x-9\right)+...+x\left(x-9\right)-\left(x-9\right)+1\)
\(P\left(9\right)=1\)
b)
\(Q=\left(x^{15}-7x^{14}\right)-\left(x^{14}-7x^{13}\right)+\left(x^{13}-7x^{12}\right)-...-\left(x^2-7x\right)+\left(x-7\right)+2\)
\(=x^{14}\left(x-7\right)-x^{13}\left(x-7\right)+x^{12}\left(x-7\right)-...-x\left(x-7\right)+\left(x-7\right)+2\)
\(Q\left(7\right)=2\)