Những câu hỏi liên quan
AN
Xem chi tiết
ND
7 tháng 7 2021 lúc 12:59

Ta có: \(\frac{x^3+y^3+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)}{x+y+z}\)

\(=\frac{\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-yz-zx-3xy\right)}{x+y+z}\)

\(=x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\left(\forall x,y,z\right)\)

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
ND
Xem chi tiết
NL
Xem chi tiết
NQ
Xem chi tiết
AH
4 tháng 7 2017 lúc 23:47

Okay vậy là sửa đề thành \(x+y+z=0\) nhé.

Thử nhiều lần kết luận là bài toán có thể chứng minh chặt hơn nữa là \(\frac{(x^2+y^2+z^2)^3}{(x^3+y^3+z^3)^2}\geq 6\)

Giải như sau:

Do có \(3\) số nên theo định lý Dirichlet tồn tại hai số cùng dấu. Giả sử hai số đó là \(x,y\) thì \(xy\geq 0\)

Dựa vào điều kiện đề bài ta dễ có \(x^3+y^3+z^3=3xyz\) , nên

\(P=\frac{(x^2+y^2+z^2)^3}{(x^3+y^3+z^3)^2}=\frac{8(x^2+y^2+xy)^3}{9x^2y^2(x+y)^2}\)

Đặt \(\left\{\begin{matrix} x^2+y^2=a\\ xy=b\end{matrix}\right.\Rightarrow P=\frac{8(a+b)^3}{9b^2(a+2b)}\) .

Ta CM \(P\geq 6\Leftrightarrow 4a^3+12a^2b\geq 15ab^2+50b^3\) \((1)\)

\(x^2+y^2\geq 2xy\rightarrow a\geq 2b\geq 0\). Vì vậy:

\(\left\{\begin{matrix} 4a^3+12a^2b=4a.a^2+12ab.a\geq 16ab^2+24ab^2=40ab^2\\ 15ab^2+50b^3\leq 15ab^2+25ab^2=40ab^2\end{matrix}\right.\)

Do đó \((1)\) đúng, ta có đpcm.

Bình luận (0)
AH
4 tháng 7 2017 lúc 21:24

Bài toán sai ngay với $x=y=z=\frac{1}{3}$

Bình luận (2)
NQ
4 tháng 7 2017 lúc 22:11

mình ghi lộn đề rồi, xin lỗi. x+y+z=0

Bình luận (0)
DX
Xem chi tiết
NK
Xem chi tiết
NT
27 tháng 7 2023 lúc 21:44

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

Bình luận (0)
HM
Xem chi tiết
H24
Xem chi tiết
NT
6 tháng 1 2024 lúc 19:38

\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)

=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)

=>yz+2xz+3xy=0

=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)

\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)

=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)

=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)

=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)

=>A+xy+2/3xz+1/3yz=1

=>A=1

Bình luận (0)