Những câu hỏi liên quan
DT
Xem chi tiết
H24
18 tháng 8 2023 lúc 21:39

\((x+y)^2+(x-y)^2-2(x+y)(x-y)\)

\(= x^2 + 2xy + y^2 + x^2 - 2xy + y^2 - 2(x^2 - y^2)\)

\(= (x^2 + x^2) + (2xy - 2xy) + (y^2 + y^2) - 2x^2 + 2y^2\)

\(= 2x^2 + 2y^2 - 2x^2 + 2y^2\)

\(= (2x^2 - 2x^2) + (2y^2 + 2y^2)\)

\(= 4y^2\)

Bình luận (0)
ES
Xem chi tiết
TM
12 tháng 9 2017 lúc 15:40

a, x2+ x+ 1

= x2 + 2x.1 +12

= ( x+1)2

Có: (x+1)2 >= 0

nên biểu thức luôn dương với mọi gia trị của x

tương tự với các phần còn lại

Bình luận (0)
ES
Xem chi tiết
NT
26 tháng 5 2022 lúc 20:18

a: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

c: \(x^2+xy+y^2+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\)

Bình luận (0)
ES
Xem chi tiết
NT
26 tháng 5 2022 lúc 20:24

a: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

b: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)

c: \(x^2+xy+y^2+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\)

Bình luận (0)
ES
Xem chi tiết
NT
26 tháng 5 2022 lúc 21:45

 

undefined

Bình luận (0)
HQ
Xem chi tiết
NT
25 tháng 7 2021 lúc 20:21

Ta có: \(\left(x-y\right)^3+4y\left(2x^2+y^2\right)\)

\(=x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3\)

\(=x^3+5x^2y+3xy^2+3y^3\)

\(=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)

\(=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)

Bình luận (0)
TC
25 tháng 7 2021 lúc 20:22

undefined

Bình luận (0)
D5
Xem chi tiết
ZZ
11 tháng 5 2019 lúc 11:53

\(\left(x-y\right)^3+4y\left(2x^2+y^2\right)=\left(x+y\right)^3+2y\left(x^2+y^2\right)\)

\(\Leftrightarrow x^3-3x^2y+3xy^2-y^3+8x^2y+4y^3=x^3+3x^2y+3xy^2+y^3+2x^2y+2y^3\)

\(\Leftrightarrow\left(-3x^2y+8x^2y\right)+3xy^2+3y^3=\left(3x^2y+2x^2y\right)+3xy^2+3y^2\)

\(\Leftrightarrow5x^2y+3xy^2+3y^2=5x^2y+3xy^2+3y^2\)

Bình luận (0)
BT
Xem chi tiết
TT
28 tháng 10 2020 lúc 20:55

\(\Leftrightarrow N=\left[\left(x-y\right)\left(x-4y\right)\right]\left[\left(x-2y\right)\left(x-3y\right)\right]+y^4\)

\(\Leftrightarrow N=\left(x^2+4y^2-5xy\right)\left(x^2-5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+4y^2-5xy\)

Khi đó

\(N=t\left(t+2y^2\right)+y^4=t^2+2ty^2+\left(y^2\right)^2=\left(y^2+t\right)^2=\left(x^2-5xy+5y^2\right)^2\)

=> N là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
HP
Xem chi tiết
AN
4 tháng 8 2017 lúc 7:55

\(x^2+y^2+4=2xy+4x+4y\)

\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)

Xét phương trình theo nghiệm x.

\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)

\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)

Vì x, y nguyên dương nên 

\(\Rightarrow\sqrt{2y}=a\)

\(\Rightarrow y=2n^2\)

\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)

Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.

Bình luận (0)
H24
4 tháng 8 2017 lúc 18:10

\(x^2+y^2+4=2xy+4x+4y\)

<=> \(\left(x^2-4x+4\right)+y^2-2y\left(x-2\right)=8y\)

<=> \(\left(x-y-2\right)^2=8y\)

<=> \(\left(\frac{x-y-2}{4}\right)^2=\frac{y}{2}\)

=> \(\frac{y}{2}\)là số chính phương

CMTT x/2 là số chính phương

Bình luận (0)