Những câu hỏi liên quan
H24
Xem chi tiết
AD
23 tháng 7 2023 lúc 15:47

\(a,\left(x-1\right)^2-2^2=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\\ b,=\left(2x\right)^2+2.2x.3+3^2\\ =\left(2x+3\right)^2\\ c,=x^3-\left(2y\right)^3\\ =\left(x-2y\right)\left(x^2+2xy+4y^2\right)\\ d,=x^3\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^3-1\right)\left(x^2-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)\left(x-1\right)\left(x+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\)

\(e,=-4x^2\left(x-1\right)+\left(x-1\right)\\ =\left(1-4x^2\right)\left(x-1\right)\\ =\left(1-2x\right)\left(1+2x\right)\left(x-1\right)\)

\(f,=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\\ =\left(2x+1\right)^3\)

Bình luận (0)
NM
Xem chi tiết
LD
30 tháng 6 2017 lúc 16:45

Ta có : x+ x3 + 6x2 + 5x + 5 

= (x4 + 5x2) + (x3 + 5x) + (x2 + 5)

= x2(x2 + 5) + x(x2 + 5) + (x2 + 5)

= (x2 + 5)(x2 + x + 1)

Bình luận (0)
DM
Xem chi tiết
DM
4 tháng 8 2017 lúc 20:47

Mình sửa: Bài 1
2)x2+3x-15

Bình luận (0)
LG
20 tháng 5 2018 lúc 13:52

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

Bình luận (0)
DG
8 tháng 9 2018 lúc 11:51

\(x^2-7x+10\)

\(=x^2-2x-5x+10\)

\(=x\left(x-2\right)-5\left(x-2\right)\)

\(=\left(x-2\right)\left(x-5\right)\)

học tốt

Bình luận (0)
PH
Xem chi tiết
H24
Xem chi tiết
NT
20 tháng 12 2020 lúc 13:25

1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)

\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)

3, \(x^4-5x^2+4\)

Đặt \(x^2=t\left(t\ge0\right)\)ta có : 

\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)

\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
29 tháng 3 2022 lúc 23:11

`Answer:`

1. `45+x^3-5x^2-9x`

`=x^3+3x^2-8x^2-24x+15x+45x`

`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`

`=(x+3).(x^2-8x+15)`

`=(x+3).(x^2-5x-3x+15)`

`=(x-3).(x-5).(x-3)`

2. `x^4-2x^3-2x^2-2x-3`

`=x^4+x^3-3x^3+x^2+x-3x-3`

`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`

`=(x+1).(x^3-3x^2+x-3)`

`=(x+1).[x^3 .(x-3).(x-3)]`

`=(x+1).(x-3).(x^2+1)`

3. `x^4-5x^2+4`

`=x^4-x^2-4x^2+4`

`=x^2 .(x^2-1)-4.(x^2-1)`

`=(x^2-1).(x^2-4)`

`=(x-1).(x+1).(x-2).(x+2)`

4. `x^4+64`

`=x^4+16x^2+64-16x^2`

`=(x^2+8)^2-16x^2`

`=(x^2+8-4x).(x^2+8+4x)`

5. `x^5+x^4+1`

`=x^5+x^4+x^3-x^3+1`

`=x^3 .(x^2+x+1)-(x^3-1)`

`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`

`=(x^2+x+1).(x^3-x+1)`

6. `(x^2+2x).(x^2+2x+4)+3`

`=(x^2+2x)^2+4.(x^2+2x)+3`

`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`

`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`

`=(x^2+2x+1).(x^2+2x+3)`

`=(x+1)^2 .(x^2+2x+3)`

7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`

`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`

`=x^6+8x^4+19x^3+30x^2+88x+64`

8. `x^3 .(x^2-7)^2-36x`

`=x[x^2.(x^2-7)^2-36]`

`=x[(x^3-7x)^2-6^2]`

`=x.(x^3-7x-6).(x^3-7x+6)`

`=x.(x^3-6x-x-6).(x^3-x-6x+6)`

`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`

`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`

`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`

`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`

`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`

9. `x^5+x+1`

`=x^5-x^2+x^2+x+1`

`=x^2 .(x^3-1)+(x^2+x+1)`

`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`

`=(x^2+x+1).(x^3-x^2+1)`

10. `x^8+x^4+1`

`=[(x^4)^2+2x^4+1]-x^4`

`=(x^4+1)^2-(x^2)^2`

`=(x^4-x^2+1).(x^4+x^2+1)`

`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`

`=[(x^2+1)^2-x^2].(x^4-x^2+1)`

`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)

11. ` x^5-x^4-x^3-x^2-x-2`

`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`

`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`

`=(x-2).(x^4+x^3+x^2+x+1)`

12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`

`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`

`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`

`=(x^2-1).(x^7-x^4-x^3+1)`

`=(x-1)(x+1)(x^3-1)(x^4-1)`

`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`

`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`

`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`

13. `(x^2-x)^2-12(x^2-x)+24`

`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`

`=(x^2-x+6)^2-12`

`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
PT
19 tháng 11 2024 lúc 20:48

Cưu là mình vs (x^2+x)^2-2(x^2+x)-15

Bình luận (0)
PT
Xem chi tiết
LD
25 tháng 9 2017 lúc 11:57

Ta có : x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

CÁC Ý SAU TƯƠNG TỰ

Bình luận (0)
AT
19 tháng 2 2018 lúc 13:08

   x3 - 7x + 6 

= x3 - x - 6x + 6 

= x(x2 - 1) - 6(x - 1)

= x(x + 1)(x - 1) - 6(x - 1)

= (x - 1) [x(x + 1) - 6]

= (x - 1) (x2 + x - 6) . 

Bình luận (0)
DT
Xem chi tiết
H24
11 tháng 9 2018 lúc 16:01

\(\left(1+2\right),y^2-13y+12=y^2-12y-y-12=y\left(y-12\right)+\left(y-12\right)=\left(y+1\right)\left(y-12\right)\)

\(3,x^2-x-30=x^2-6x+5x-30=x\left(x-6\right)+5\left(x-6\right)=\left(x+5\right)\left(x-6\right)\)

\(4,y^2+y-42=y^2-6y+7y-42=y\left(y-6\right)+7\left(y-6\right)=\left(y+7\right)\left(y-6\right)\)

\(5,x^2+3x-10=x^2-2x+5x-10=x\left(x-2\right)+5\left(x-2\right)=\left(x+5\right)\left(x-2\right)\)

\(6,x^2-8x+15=x^2-5x-3x+15=x\left(x-5\right)-3\left(x-5\right)=\left(x-3\right)\left(x-5\right)\)

Bình luận (0)
TT
Xem chi tiết