Những câu hỏi liên quan
VV
Xem chi tiết
NT
13 tháng 5 2022 lúc 9:42

b: \(A=\dfrac{2}{3}\left(\dfrac{1}{60}-\dfrac{1}{63}+\dfrac{1}{63}-\dfrac{1}{66}+...+\dfrac{1}{117}-\dfrac{1}{120}\right)+\dfrac{2}{2003}\)

\(=\dfrac{2}{3}\cdot\dfrac{1}{120}+\dfrac{2}{2003}\)

\(=2\left(\dfrac{1}{360}+\dfrac{1}{2003}\right)\)

\(B=\dfrac{5}{4}\left(\dfrac{1}{40}-\dfrac{1}{44}+\dfrac{1}{44}-\dfrac{1}{48}+...+\dfrac{1}{76}-\dfrac{1}{80}\right)+\dfrac{5}{2003}\)

\(=\dfrac{5}{4}\cdot\dfrac{1}{80}+\dfrac{5}{2003}\)

\(=5\left(\dfrac{1}{320}+\dfrac{1}{2003}\right)\)

Vì 1/360+1/2003<1/320+1/2003

nên A<B

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
KT
8 tháng 3 2017 lúc 21:18

Ta co

+)A=2/60*63+2/63*66+...+2/117*120+2/2003

A*3/2=3/60*63+3/63*66+...+3/117*120+3/2003

A*3/2=1/60-1/63+1/63-1/66+...+1/117-1/120+3/2003

A*3/2=1/60-1/120+3/2003

A=(1/120+3/2003)*2/3

+)B=5/40*44+5/44*48+...+5/76*80+5/2003

B*4/5=4/40*44+4/44*48+...+4/76*80+4/2003

B*4/5=1/40-1/44+1/44-1/48+...+1/76-1/80+4/2003

B*4/5=1/40-1/80+4/2003

B=(1/80+4/2003)*5/4

Tu tren ta co A=(1/120+3/2003)*2/3

B=(1/80+4/2003)*5/4

Vay A<B(Vi 1/120<1/80;3/2003<4/2003;2/3<5/4)

Bình luận (2)
MN
21 tháng 12 2023 lúc 20:11

+)A=2/60*63+2/63*66+...+2/117*120+2/2003

A*3/2=3/60*63+3/63*66+...+3/117*120+3/2003

A*3/2=1/60-1/63+1/63-1/66+...+1/117-1/120+3/2003

A*3/2=1/60-1/120+3/2003

A=(1/120+3/2003)*2/3

+)B=5/40*44+5/44*48+...+5/76*80+5/2003

B*4/5=4/40*44+4/44*48+...+4/76*80+4/2003

B*4/5=1/40-1/44+1/44-1/48+...+1/76-1/80+4/2003

B*4/5=1/40-1/80+4/2003

B=(1/80+4/2003)*5/4

Tu tren ta co A=(1/120+3/2003)*2/3

B=(1/80+4/2003)*5/4

Vay A<B(Vi 1/120<1/80;3/2003<4/2003;2/3<5/4)

 

Bình luận (0)
MN
21 tháng 12 2023 lúc 20:12

C1:Ta co

+)A=2/60*63+2/63*66+...+2/117*120+2/2003

A*3/2=3/60*63+3/63*66+...+3/117*120+3/2003

A*3/2=1/60-1/63+1/63-1/66+...+1/117-1/120+3/2003

A*3/2=1/60-1/120+3/2003

A=(1/120+3/2003)*2/3

+)B=5/40*44+5/44*48+...+5/76*80+5/2003

B*4/5=4/40*44+4/44*48+...+4/76*80+4/2003

B*4/5=1/40-1/44+1/44-1/48+...+1/76-1/80+4/2003

B*4/5=1/40-1/80+4/2003

B=(1/80+4/2003)*5/4

Tu tren ta co A=(1/120+3/2003)*2/3

B=(1/80+4/2003)*5/4

Vay A<B(Vi 1/120<1/80;3/2003<4/2003;2/3<5/4)

C2:

b: �=23(160−163+163−166+...+1117−1120)+22003

=23⋅1120+22003

=2(1360+12003)

�=54(140−144+144−148+...+176−180)+52003

=54⋅180+52003

Bình luận (0)
XD
Xem chi tiết
NN
Xem chi tiết
HN
23 tháng 3 2017 lúc 20:46

a, Ta có: \(3^{21}>3^{20}\left(1\right)\)

\(2^{31}>2^{30}\)(2)

\(\left\{{}\begin{matrix}3^{20}=3^{2.10}=\left(3^2\right)^{10}=9^{10}\\2^{30}=2^{3.10}=\left(2^3\right)^{10}=8^{10}\end{matrix}\right.\)

Do \(9>8\Rightarrow9^{10}>8^{10}\Rightarrow3^{20}>2^{30}\left(3\right)\)

Từ (1);(2) và (3) ta suy ra \(3^{21}>2^{31}\)

Bình luận (2)
H24
23 tháng 3 2017 lúc 20:51

a)\(3^{21}=\left(3^2\right)^{10}.3=9^{10.3}\)

\(2^{31}=\left(2^3\right)^{10}.2=8^{10}.2\)

\(9^{10}.3>8^{10}.2\Rightarrow3^{21}>2^{31}\)

b)\(A=\dfrac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)

\(A=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)

\(A=1+\dfrac{5^9}{1+5+5^2+..+5^9}\)

A=\(1+1:\dfrac{1+5+5^2+...+5^9}{5^9}\)

\(A=1+1:\left(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\right)\)

Tương tự \(B=1+1:\left(\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\right)\)

\(\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+....+\dfrac{1}{5}< \dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)

\(\Rightarrow A>B\)

Bình luận (2)
HN
23 tháng 3 2017 lúc 21:12

b, \(A=\dfrac{1+5+5^2+...+5^8+5^9}{1+5+5^2+...+5^8}\)\(=\dfrac{1+5+5^2+...+5^8}{1+5+5^2+...+5^8}+\dfrac{5^9}{1+5+5^2+...+5^8}\)

\(=1+\dfrac{5^9}{1+5+5^2+...+5^8}\)

\(B=\dfrac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}\)

\(=\dfrac{1+3+3^2+...+3^8}{1+3+3^2+...+3^8}+\dfrac{3^9}{1+3+3^2+...+3^8}\)

Đặt \(C=\dfrac{5^9}{1+5+5^2+...+5^9}\) ; \(D=\dfrac{3^9}{1+3+3^2+...+3^9}\)

Ta lại có: \(\dfrac{1}{C}=\dfrac{1+5+5^2+...+5^9}{5^9}\)

\(=\dfrac{1}{5^9}+\dfrac{5}{5^9}+\dfrac{5^2}{5^9}+...+\dfrac{5^9}{5^9}\)

\(=\dfrac{1}{5^9}+\dfrac{1}{5^8}+\dfrac{1}{5^7}+...+\dfrac{1}{5}\)

\(\dfrac{1}{D}=\dfrac{1+3+3^2+...+3^9}{3^9}\)

\(=\dfrac{1}{3^9}+\dfrac{3}{3^9}+\dfrac{3^2}{3^9}+...+\dfrac{3^9}{3^9}\)

\(=\dfrac{1}{3^9}+\dfrac{1}{3^8}+\dfrac{1}{3^7}+...+\dfrac{1}{3}\)

\(\dfrac{1}{5^9}>\dfrac{1}{3^9};\dfrac{1}{5^8}>\dfrac{1}{3^8};....;\dfrac{1}{5}>\dfrac{1}{3}\)

\(\Rightarrow\dfrac{1}{5^9}+\dfrac{1}{5^8}+....+\dfrac{1}{5}>\dfrac{1}{3^9}+\dfrac{1}{3^8}+...+\dfrac{1}{3}\)

\(\Rightarrow\dfrac{1}{C}< \dfrac{1}{D}\Rightarrow C>D\Rightarrow1+C>1+D\)

\(1+C=A;1+D=B\) \(\Rightarrow A>B\)

Vậy A>B

Bình luận (0)
TT
Xem chi tiết
H9
23 tháng 10 2023 lúc 9:51

a) \(S=5+5^2+...+5^{2006}\)

\(5S=5^2+5^3+...+5^{2007}\)

\(5S-S=5^2+5^3+...+5^{2007}-5-5^2-...-5^{2006}\)

\(4S=5^{2007}-5\)

\(S=\dfrac{5^{2007}-5}{4}\)

b) Ta có:

\(S=5+5^2+...+5^{2006}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2005}+5^{2006}\right)\)

\(S=\left(5+25\right)+5^2\cdot\left(5+25\right)+...+5^{2004}\cdot\left(5+25\right)\)

\(S=30+5^2\cdot30+...+5^{2004}\cdot30\)

\(S=30\cdot\left(1+5^2+...+5^{2004}\right)\)

Vậy: S ⋮ 30 

Bình luận (0)
TT
Xem chi tiết
NT
11 tháng 1 2023 lúc 9:22

Bài 3:

a: a*S=a^2+a^3+...+a^2023

=>(a-1)*S=a^2023-a

=>\(S=\dfrac{a^{2023}-a}{a-1}\)

b: a*B=a^2-a^3+...-a^2023

=>(a+1)B=a-a^2023

=>\(B=\dfrac{a-a^{2023}}{a+1}\)

Bình luận (0)
LA
Xem chi tiết