Những câu hỏi liên quan
H24
Xem chi tiết
KF
9 tháng 5 2015 lúc 21:38

\(\frac{1}{2^2}+\)\(\frac{1}{3^2}+\)\(\frac{1}{4^2}+\)...+\(\frac{1}{2015^2}+\)\(\frac{1}{2015}\)

<\(\frac{1}{1.2}+\)\(\frac{1}{3.4}+\)\(\frac{1}{4.5}+\)...+\(\frac{1}{2014.2015}\)+\(\frac{1}{2015}\)

Ta có:\(\frac{1}{1.2}+\)\(\frac{1}{3.4}+\)\(\frac{1}{4.5}+\)...+\(\frac{1}{2014.2015}\)+\(\frac{1}{2015}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}\)

=1

=>\(\frac{1}{2^2}+\)\(\frac{1}{3^2}+\)\(\frac{1}{4^2}+\)...+\(\frac{1}{2015^2}+\)\(\frac{1}{2015}\) \(

Bình luận (0)
H24
9 tháng 5 2015 lúc 21:47

Ta có : \(\frac{1}{2^2}

Bình luận (0)
AB
29 tháng 4 2018 lúc 9:38

Katherine làm sai cmnr \(\frac{1}{2^2}\)giải kiểu gì ra\(\frac{1}{1.2}\)

Bình luận (0)
ND
Xem chi tiết
PK
Xem chi tiết
SG
24 tháng 7 2016 lúc 10:58

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

                                                                            \(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(< 1-\frac{1}{2016}< 1\left(đpcm\right)\)

Bình luận (0)
VN
26 tháng 3 2017 lúc 15:49

Thằng vua hải tặc vàng oai vừa thôi !

Bình luận (0)
VV
26 tháng 3 2017 lúc 22:20

thi sao

Bình luận (0)
TT
Xem chi tiết
TP
14 tháng 2 2019 lúc 18:15

Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2014\cdot2015}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

Bình luận (0)
H24
14 tháng 2 2019 lúc 18:16

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2015^2}< \frac{1}{2014.2015}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}< 1^{\left(đpcm\right)}\)

Bình luận (0)
DM
Xem chi tiết
TN
18 tháng 12 2016 lúc 23:27

tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha

Bình luận (0)
DM
21 tháng 12 2016 lúc 16:11

Bài này trước tiên ta phải đi chứng minh công thức:

                      \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 Xong áp dụng là ra thui.
 

Bình luận (0)
H24
22 tháng 12 2016 lúc 10:01

Hay thật Công thức rất hay c/m không phức tạp lắm.

nhưng từ bài toán ban đầu tự nhiên nội suy ra được cái công thức đó. Khó nhỉ

Bình luận (0)
DA
Xem chi tiết
NT
19 tháng 8 2016 lúc 15:50

Bạn làm tương tự như thế này nhé! http://olm.vn/hoi-dap/question/72512.html ok

Bình luận (0)
IM
19 tháng 8 2016 lúc 16:13

Ta có

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}\)

\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1\frac{3}{4}-\frac{1}{2016}< 1\frac{3}{4}\)

=> đpcm

Bình luận (1)
DA
Xem chi tiết
H24
20 tháng 8 2016 lúc 7:42

bài này hình như có nguoif đăg rùi mà 

Bình luận (0)
PM
Xem chi tiết
RH
Xem chi tiết