HA

Chứng minh rằng

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}< 1\)

TN
29 tháng 6 2017 lúc 15:34

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{2015^2}\)

\(\Leftrightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2014.2025}\)

\(\Leftrightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2014.2015}\)

\(\Leftrightarrow B< 1-\frac{1}{2015}< 1\)

\(\Leftrightarrow B< 1\rightarrowđpcm\)

Bình luận (0)
DT
29 tháng 6 2017 lúc 16:12

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)

+ Xét : \(\frac{1}{1\cdot2}>\frac{1}{2^2}\)

\(\frac{1}{2\cdot3}>\frac{1}{3^2}\)

\(\frac{1}{3\cdot4}>\frac{1}{4^2}\)

...

\(\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(A=1-\frac{1}{2015}< 1\)

\(\Rightarrow B< A< 1\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PK
Xem chi tiết
TT
Xem chi tiết
PM
Xem chi tiết
DJ
Xem chi tiết
AD
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
HN
Xem chi tiết