Những câu hỏi liên quan
NT
Xem chi tiết
ND
1 tháng 9 2020 lúc 13:54

\(\text{a)}\Rightarrow x-1-x-1-x+2=5\)

\(\Rightarrow-x=5\)

\(\Rightarrow x=-5\)

     \(\text{Vậy x=-5}\)

\(\text{b)}\left(2x-1\right)^2-\left(2x+3\right)^2=7\)

\(\Rightarrow\left(4x^2-4x+1\right)-\left(4x^2+12x+9\right)=7\)

\(\Rightarrow4x^2-4x+1-4x^2-12x-9=7\)

\(\Rightarrow-16x-8=7\)

\(\Rightarrow-16x=15\)

\(\Rightarrow x=\frac{-15}{16}\)

      \(\text{Vậy }x=\frac{-15}{16}\)

\(\text{c)}\Rightarrow16x^2-9-\left(16x^2-8x+1\right)=8\)

\(\Rightarrow-9+8x-1=8\)

\(\Rightarrow8x=18\)

\(\Rightarrow x=\frac{18}{8}=\frac{9}{4}\)

      \(\text{Vậy }x=\frac{9}{4}\)

\(\text{Phần d số rất lẻ, có thể bạn chép sai đề nên mình ko chữa nha~}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NT
14 tháng 10 2021 lúc 22:11

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

Bình luận (0)
NM
Xem chi tiết
LL
2 tháng 9 2021 lúc 19:54

a) \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Rightarrow3x-6+2x-6=5\)

\(\Rightarrow5x=17\Rightarrow x=\dfrac{17}{5}\)

b) \(\left(2x-8\right)^2-16=0\)

\(\Rightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)

\(\Rightarrow\left(2x-12\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=12\\2x=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

c) \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)

\(\Rightarrow4x^2-4x+1-4x^2+12x-x+3=3\)

\(\Rightarrow7x=-1\Rightarrow x=-\dfrac{1}{7}\)

Bình luận (0)
NT
2 tháng 9 2021 lúc 19:55

a: Ta có: \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Leftrightarrow3x-6+2x-6=5\)

\(\Leftrightarrow5x=17\)

hay \(x=\dfrac{17}{5}\)

b: Ta có: \(\left(2x-8\right)^2-16=0\)

\(\Leftrightarrow\left(2x-4\right)\left(2x-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Bình luận (0)
NT
2 tháng 9 2021 lúc 19:57

a. \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Leftrightarrow3x-6+2x-6=5\)

\(\Leftrightarrow5x=17\)

\(\Leftrightarrow x=\dfrac{17}{5}\)

b. \(\left(2x-8\right)^2-16=0\)

\(\Leftrightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)

\(\Leftrightarrow4\left(x-6\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

c. \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)

\(\Leftrightarrow4x^2-4x+1-4x^2+11x+3-3=0\)

\(\Leftrightarrow7x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{7}\)

Bình luận (0)
CM
Xem chi tiết
MH
10 tháng 9 2021 lúc 7:26

a)3(x-2)+2(x-3)=5

=>3x-6+2x-6=5

=>5x=17

=>x=17/5

Bình luận (0)
MH
10 tháng 9 2021 lúc 7:27

b)(2x-8)^2=16

TH1:2x-8=4=>x=6

TH2:2x-8=-4=>x=2

Bình luận (0)
NM
10 tháng 9 2021 lúc 7:30

\(a,\Leftrightarrow3x-6+2x-6=5\\ \Leftrightarrow5x-12=5\\ \Leftrightarrow x=\dfrac{17}{5}\\ b,\left(2x-8\right)^2-16=0\\ \Leftrightarrow\left(2x-12\right)\left(2x-4\right)=0\\ \Leftrightarrow4\left(x-6\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-4x+1-4x^2+11x+3=3\\ \Leftrightarrow7x=-1\\ \Leftrightarrow x=-\dfrac{1}{7}\)

Bình luận (0)
PN
Xem chi tiết
NH
Xem chi tiết
EC
5 tháng 7 2021 lúc 12:44

a) \(\left|4-x\right|+2x=3\)

<=> \(\left|4-x\right|=3-2x\)

<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)

Vậy x = -1

b) \(\left|x-7\right|+2x+5=6\)

<=> \(\left|x-7\right|=1-2x\)

<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)

Vậy x = -6

c) \(3x-\left|2x+1\right|=2\)

<=> \(\left|2x+1\right|=3x-2\)

<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)

Vậy x = 3

d) \(\left|x+2\right|-x=2\)

<=> \(\left|x+2\right|=x+2\)

<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)

<=> 0x = 0 (luôn đúng) và x = -2 (ktm)

Vậy x \(\ge\)-2

Bình luận (0)
 Khách vãng lai đã xóa
EC
5 tháng 7 2021 lúc 13:10

e) \(\left|x-3\right|=21\)

<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)

<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)

Vậy x = 24 hoặc x = -18

f) \(\left|2x+3\right|-\left|x-3\right|=0\)

<=> \(\left|2x+3\right|=\left|x-3\right|\)

<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)

Vậy x thuộc {-6; 0}

g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)

          \(\left|x+\frac{2}{8}\right|\ge0\forall x\)

    \(\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)

Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)

<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)

Vậy x = 1

h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)

<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)

Lập bảng xét dấu: 

x                     -3/2              2

x - 2        2 - x    |        2 - x    0        x - 2

2x + 3  -2x - 3   0      2x + 3  |          2x + 3

Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2

<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)

Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2

<=> 4x = 1 <=> x = 1/4 ((tm)

Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2

<=> 2x = -3 <=>  x = -3/2 (ktm)

Vậy x = 1/4

i) |2x - 3| - x = |2 - x|

<=> |2x - 3| - |2 - x| = x (*)

Lập bảng xét dấu

x                    3/2               2

2x - 3   3 - 2x   0     2x - 3   |  2x - 3

2 - x     2 - x     |       2 - x    0   x - 2

Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x =  x

<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x

<=> 2x = 5 <=> x = 5/2 (ktm)

Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x

<=> 0x = -5 (vô lí)

Vậy x = 1/2

k) 2|x - 3| - |4x - 1| = 0

<=> 2|x - 3| = |4x - 1|

<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
VT
Xem chi tiết
NM
8 tháng 9 2021 lúc 14:32

\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)

\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)

Bình luận (0)
NT
8 tháng 9 2021 lúc 14:29

Bài 4:

a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)

\(\Leftrightarrow6x-9-2x+4=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

hay \(x=\dfrac{13}{3}\)

c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

hay x=1

Bình luận (0)
TM
8 tháng 9 2021 lúc 14:41

a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy: \(x=\dfrac{1}{2}\)

===========

b/ \(x\left(5-2x\right)+2x\left(x-1\right)=13\)

\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

\(\Leftrightarrow3x=13\)

\(\Leftrightarrow x=\dfrac{13}{3}\)

Vậy: \(x=\dfrac{13}{3}\)

==========

c/  \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)

\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

\(\Leftrightarrow-8x=-8\)

\(\Leftrightarrow x=1\)

Vậy: \(x=1\)

==========

d/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)

\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=8\)

\(\Leftrightarrow-2x=-2\)

\(\Leftrightarrow x=1\)

Vậy: \(x=1\)

==========

e/ \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow-14x=-4\)

\(\Leftrightarrow x=\dfrac{2}{7}\)

Vậy: \(x=\dfrac{2}{7}\)

==========

f/ \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)

\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)

\(\Leftrightarrow-x^3=8\)

\(\Leftrightarrow x=-2\)

Vậy: \(x=-2\)

Bình luận (0)
VL
Xem chi tiết
H24
25 tháng 8 2019 lúc 21:50

a) \(\left(x-3\right)^2-4=0\)

\(\left(x-3\right)^2=0+4\)

\(\left(x-3\right)^2=4\)

\(\left(x-3\right)^2=\pm4\)

\(\left(x-3\right)^2=\pm2^2\)

\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(4x^2+12x+9-4x^2+1=22\)

\(12x+10=22\)

\(12x=22-10\)

\(12x=12\)

\(x=1\)

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

\(16x^2-9-16x^2+40x-25=16\)

\(-34+40x=16\)

\(40x=16+34\)

\(40x=50\)

\(x=\frac{50}{40}=\frac{5}{4}\)

d) \(x^3-9x^2+27x-27=-8\)

\(x^3-9x^2+27x-27+8=0\)

\(x^3-9x^2+27x-19=0\)

\(\left(x^2-8x+19\right)\left(x-1\right)=0\)

Vì \(\left(x^2-8x+19\right)>0\) nên:

\(x-1=0\)

\(x=1\)

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)

\(3x+1=2\)

\(3x=2-1\)

\(3x=1\)

\(x=\frac{1}{3}\)

Bình luận (0)
CD
Xem chi tiết
LL
14 tháng 9 2021 lúc 14:51

1) \(\dfrac{3x}{4x-8}\)

\(ĐKXĐ:4x-8\ne0\Leftrightarrow x\ne2\)

2) \(\dfrac{2x}{x^2-9}\)

\(ĐKXĐ:x^2-9\ne0\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

3) \(\dfrac{6}{x^3+1}=\dfrac{6}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(ĐKXĐ:\)\(x+1\ne0\Leftrightarrow x\ne-1\)

(do \(x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\))

4) \(\dfrac{6x^2}{x^2-2x+1}=\dfrac{6x^2}{\left(x-1\right)^2}\)

\(ĐKXĐ:x-1\ne0\Leftrightarrow x\ne1\)

5) \(\dfrac{x-2}{x^2+3}\)

Do \(x^2+3>0\forall x\in R\)

Vậy biểu thức trên xác định với mọi x

6) \(\dfrac{2x}{x^2+3x+2}=\dfrac{2x}{\left(x+1\right)\left(x+2\right)}\)

\(ĐKXĐ:\)\(\left\{{}\begin{matrix}x+1\ne0\\x+2\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne-2\end{matrix}\right.\)

Bình luận (0)