hình thang cân ABCD, đáy nhỏ AB. Đường cao AH,BK. Biết AB=15 cm, AH=12cm. tính dh , tính hk
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 6. Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AH, BK của hình thang.
a) Chứng minh rằng DH = CK.
b) Cho biết AB = AH , AD =15 cm , DH =9 . Tính DC
a: Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
\(\widehat{D}=\widehat{C}\)
Do đó: ΔAHD=ΔBKC
=>DH=CK
b: DH=CK
mà DH=9
nên CK=9
ΔAHD vuông tại H
=>\(AH^2+HD^2=AD^2\)
=>\(AH^2=15^2-9^2=144\)
=>AH=12
Xét tứ giác ABKH có
AH//BK
AH=BK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\) và AB=AH
nên ABKH là hình vuông
=>AB=AH=HK=12
DC=DH+HK+KC
=12+9+9
=30
Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.
a) Chứng minh DH = C D − A B 2 .
b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cân ABCD.
a) Chứng minh
DADH = DBCK (ch-gnh)
Þ DH = CK
Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK
b) Vậy D H = C D − A B 2
c) DH = 4cm, AH = 3cm; SABCD = 30cm2
2. Cho hình thang cân ABCD (AB // CD) có
A D = 3
. Tính các góc của hình thang cân.
3. Cho hình thang cân ABCD (AB // CD) có AH và BK là hai đường cao của hình thang.
a) Chứng minh DH = .
2
CD AB −
b) Biết AB = 6 cm, CD = 14 cm, AD = 5 cm, tính DH, AH và diện tích hình thang cân
ABCD.
4. Cho hình thang cân ABCD (AB//CD) có
0 A B = = 60
, AB = 4,5cm; AD = BC = 2 cm. Tính
độ dài đáy CD và diện tích hình thang cân ABCD.
5. Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến của tam giác.
Chứng minh BCDE là hình thang cân.
6. Cho tam giác ABC cân tại A có BH và CK là hai đường cao của tam giác. Chứng minh
BCHK là hình thang cân.
7. Cho tam giác ABC cân tại A, có M là trung điểm của BC. Kẻ tií Mx song song với AC cắt AB
tại E và tia My song song với AB cắt AC tại F. Chứng minh:
a) EF là đường trung bình của tam giác ABC;
b) AM là đường trung trực của EF.
8. Cho tam giác ABC, có AM là trung tuyến ứng với BC. Trên cạnh AB lấy điểm D và E sao cho
AD = DE = EB. Đoạn CD cắt AM tại I. Chứng minh:
a) EM song song vói DC;
b) I là trung điểm của AM;
Giúp em với ạ
Bài 8:
a: Xét ΔDBC có
E là trung điểm của BD
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔDBC
Suy ra: EM//DC
b: Xét ΔAEM có
D là trung điểm của AE
DI//EM
Do đó: I là trung điểm của AM
Bài 5:
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)
Do đó: DE//BC
Xét tứ giác BEDC có DE//BC
nên BEDC là hình thang
mà \(\widehat{EBC}=\widehat{DCB}\)
nên BEDC là hình thang cân
Cho hình thang cân ABCD (AB//CD). AB là đáy nhỏ. O là giao điểm của hai đường chéo. Chứng minh a) Góc CAD = góc DBC b) OA=OB OC=OD c) Kẻ các đường cao AH và BK. Chứng minh DH=KC d) Cho AB=10cm, CD=20cm và đường cai AH=12cm. Tính độ dài cạnh bên
a: Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
Do đó: ΔADC=ΔBCD
Suy ra: \(\widehat{CAD}=\widehat{DBC}\)
b: Ta có: ΔADC=ΔBCD
nên \(\widehat{ODC}=\widehat{OCD}\)
hay ΔOCD cân tại O
Suy ra: OC=OD
hay OA=OB
Cho hình thang cân ABCD ( AB//CD) và AB < CD, kẻ đường cao AH, BK. C/m DH=CK. Cho AD =10 cm , DH =6 cm. Tính BK
Lời giải:
Xét tam giác $ADH$ và $BCK$ có:
$\widehat{AHD}=\widehat{BKC}=90^0$
$\widehat{ADH}=\widehat{BCK}$ (do $ABCD$ là htc)
$AD=BC$ (do $ABCD$ là htc)
$\Rightarrow \triangle ADH=\triangle BCK$ (ch-gn)
$\Rightarrow DH=CK$
Áp dụng định lý Pitago cho tam giác $ADH$ vuông:
$AH=\sqrt{AD^2-DH^2}=\sqrt{10^2-6^2}=8$ (cm)
Từ tam giác bằng nhau ở trên suy ra $BK=AH=8$ (cm)
Cho hình thang cân ABCD, AB// CD, AB =3 cm, CD= 6cm, AD= 2,5. Hai đường cao AH và BK. Tính DH, DK, AH, AK.
Hình ảnh chỉ mang tính chất minh họa
Ta có: AB=HK=3cm
=> DH=KC=(DC-HK):2=1,5cm
=> DK=DH+HK=4,5 cm
Theo định lí pitago trong tam giác vuông AHD có:
\(AH=\sqrt{AD^2-DH^2}=\sqrt{2,5^2-1,5^2}=2cm\)
Tương tự:
\(AK=\sqrt{AH^2+HK^2}=\sqrt{2^2+3^2}=\sqrt{13}cm\)
cho hình thang abcd (ab//cd) có ah và bk là 2 đg cao của hình thang
a) cm DH=(cd-ab):2
b) bik AB= 6cm, CD=5cm, tính dh,ah và diện tích hình thang cân abcd
Cho hình thang cân ABCD (AB//CD) có AH và BK là 2 đường cao của hình thang
a) Chứng minh rằng: DH = CD - AB/2
b) Biết AB = 6cm; CD = 14 cm; AD = 5cm
Tính DH; AH và diện tích hình thang ABCD
Cho hình thang cân ABCD cóAB//CD , đường cao AH HC=12cm, HD=4cm Tính đáy nhỏ AB
DC=DH+HC=16cm
Kẻ BK vuông góc DC
Xét tứ giác ABKH có
AB//KH
AH//BK
=>ABKH là hình bình hành
=>AB=HK
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
góc D=góc C
=>ΔAHD=ΔBKC
=>DH=KC=4cm
=>HK=8cm
=>AB=8cm