Tính giá trị biểu thức: P=\(\dfrac{x^4}{4}-x^2+y^2\)
tại x=4, y=\(\dfrac{1}{2}\)
rút gọn và tính giá trị biểu thức sau tại x=-1,76và y=3/25
P=\([\)(\(\dfrac{x-y}{2y-x}\)-\(\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\)):\(\dfrac{4\text{x}^4+4\text{x}^2y+y^2-4}{x^2+y+xy+x}\)\(]\):\(\dfrac{x+1}{2\text{x}^2+y+2}\)
Thịnh giải hộ
\(=\left[\left(\dfrac{-\left(x-y\right)}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x-2y\right)\left(x+y\right)}\right):\dfrac{\left(2x^2+y\right)^2-4}{x\left(x+y\right)+\left(x+y\right)}\right]:\dfrac{x+1}{2x^2+y+2}\)
\(=\dfrac{-x^2+y^2-x^2-y^2-y+2}{\left(x-2y\right)\left(x+y\right)}\cdot\dfrac{\left(x+y\right)\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)
\(=\dfrac{-2x^2-y+2}{\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)}{\left(2x^2+y-2\right)\left(2x^2+y+2\right)}\cdot\dfrac{2x^2+y+2}{x+1}\)
\(=\dfrac{-1}{x-2y}\)
Thay $x=-1,76$ và $y=\dfrac{3}{25}$ vào $P=\dfrac{-1}{x-2y}$, ta được:
$P=\dfrac{-1}{-1,76-2.(\dfrac{3}{25})}=\dfrac{1}{2}$.
rút gọn rồi tính giá trị biểu thức
\(\dfrac{3x^2-12x+12}{x^2-4}\) tại x=\(-\dfrac{1}{4}\)
\(\dfrac{x^2-5x-6}{x^2-9}\) tại x=-1
\(\dfrac{x^2-9y^2}{x^2-6xy+9y^2}\) tại x=1, y=-\(\dfrac{2}{3}\)
a) Ta có: \(\dfrac{3x^2-12x+12}{x^2-4}\)
\(=\dfrac{3\left(x^2-4x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3\left(x-2\right)}{x+2}\)
\(=\dfrac{3\cdot\left(\dfrac{-1}{4}-2\right)}{\dfrac{-1}{4}+2}=-\dfrac{27}{7}\)
b) Ta có: \(\dfrac{x^2-5x-6}{x^2-9}\)
\(=\dfrac{\left(x-6\right)\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(-1-6\right)\left(-1+1\right)}{\left(-1-3\right)\left(-1+3\right)}\)
=0
rút gọn rồi tính giá trị biểu thức
\(\dfrac{3x^2-12x+12}{x^2-4}\) tại x= -\(\dfrac{1}{4}\)
\(\dfrac{x^2-5x+6}{x^2-9}\) tại x= -1
\(\dfrac{x^2-9y^2}{x^2-6xy+9y^2}\) tại x=1, y =-\(\dfrac{2}{3}\)
Tính giá trị biểu thức sau:
a) A= (5x-7)(2x+3)-(7x+2)(x-4) tại x=\(\dfrac{1}{2}\)
b) B= (x-2y)(y-2x)+(x+2y)(y+2x) tại x = 2; y = - 2 .
a) Thay `x=1/2` vào A được:
`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`
b) Thay `x=2;y=-2` vào B được:
`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.
a) Với \(x=\dfrac{1}{2}\) ta được:
\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)
\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)
\(\Rightarrow A=\dfrac{5}{4}\)
b) Với \(x = 2; y = - 2 \) ta được :
\(\Leftrightarrow B=\left(2-2\left(-2\right)\right)\left(\left(-2\right)-2.2\right)+\left(2+2\left(-2\right)\right)\left(\left(-2\right)+2.2\right)\)
\(\Leftrightarrow B=-40\)
BT6: Tính giá trị của biểu thức
\(3,C=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-1\)
\(4,D=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)tại\(x=\dfrac{1}{2},y=-100\)
\(3,x=\dfrac{1}{2},y=-1\)
\(\Rightarrow C=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+1\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-1\right)-1\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)
\(\Rightarrow C=\dfrac{1}{2}\left(\dfrac{1}{4}+1\right)-\dfrac{1}{4}\left(-\dfrac{1}{2}\right)-\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)
\(\Rightarrow C=\dfrac{1}{2}.\dfrac{5}{4}+\dfrac{1}{8}-\left(-\dfrac{1}{4}\right)\)
\(\Rightarrow C=\dfrac{5}{8}+\dfrac{1}{8}+\dfrac{1}{4}\)
\(\Rightarrow C=1\)
\(4,x=\dfrac{1}{2},y=-100\)
\(\Rightarrow D=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+100\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-100\right)-100\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)
\(\Rightarrow D=\dfrac{1}{2}\left(\dfrac{1}{4}+100\right)-\dfrac{1}{4}\left(-\dfrac{199}{2}\right)-100\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)
\(\Rightarrow D=\dfrac{1}{2}.\dfrac{401}{4}+\dfrac{199}{8}-100.\left(-\dfrac{1}{4}\right)\)
\(\Rightarrow D=\dfrac{401}{8}+\dfrac{199}{8}+25\)
\(\Rightarrow D=100\)
3: C=x^3-xy-x^3-x^2y+x^2y-xy
=-2xy=-2*1/2*(-1)=1
4: D=x^3-xy-x^3-x^2y+x^2y-xy
=-2xy
=-2*1/2*(-100)=100
tính nhanh giá trị biểu thức tại x=1
\(\dfrac{1}{x-4}\).\(\dfrac{x+4}{x+1}\)-\(\dfrac{x+4}{x+1}\).\(\dfrac{8}{x^2-16}\)
Tính nhanh giá trị biểu thức tại x = 1
\(\dfrac{1}{x-4}\).\(\dfrac{x-4}{x+1}\) - \(\dfrac{x+4}{x+1}\).\(\dfrac{8}{x^2-16}\)
\(=\dfrac{1}{x+1}-\dfrac{8}{\left(x+1\right)\left(x-4\right)}=\dfrac{x-4-8}{\left(x+1\right)\left(x-4\right)}=\dfrac{x-12}{\left(x+1\right)\left(x-4\right)}=\dfrac{-11}{2\cdot\left(-3\right)}=\dfrac{11}{6}\)
Cho biểu thức \(A=\dfrac{2}{\sqrt{X}+2},B=\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\)(với x≥0 và x≠4)
A tính giá trị biểu thức B tại x=16
B. rút gọn biểu thức p=B/A
C. tìm tất cả giá trị nguyên của x để P<1
a: \(B=\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{4-x}\)
\(=\dfrac{1}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+2+\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
Khi x=16 thì \(B=\dfrac{2\cdot4+2}{\left(4-2\right)\left(4+2\right)}=\dfrac{10}{2\cdot6}=\dfrac{10}{12}=\dfrac{5}{6}\)
b: P=B/A
\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\dfrac{2}{\sqrt{x}+2}\)
\(=\dfrac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}+2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\)
c: P<1
=>P-1<0
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
mà x nguyên
nên \(x\in\left\{0;1;2;3\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{0;1;2;3\right\}\)
B1 rút gọn rồi tính giá trị cảu biểu thức
a) A = ( 2x - 1 ) \(^2\)+ (3 - 2x ) ( 2x + 3 ) tại x = \(\dfrac{1}{4}\)
b) x(x\(^2\)+ y ) - ( x + 2y ) ( x\(^2\)- 2xy + 4y\(^2\)) tại x= 32 , y= -2
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)