Cho hình thang ABCD( AB//CD), có AC⊥ BD, Biết AC=20cm , BD= 15cm Tính chiều cao hình thang
Vì \(AC\perp BD\) nên ta sẽ có 2 tam giác vuông ADC và BAC:
Áp dụng định lý Py - ta - go của tam giác ADC:
\(AD^2=AC^2-CD^2\)
\(\Leftrightarrow AD^2=20^2-15^2\)
\(\Rightarrow AD^2=175\Rightarrow AD=\sqrt{175}=5\sqrt{7}=13.2cm\)
Vậy...
Cho hình thang ABCD( AB//CD), có AC⊥ BD, Biết AC=20cm , BD= 15cm Tính chiều cao hình thang
Cho hình thang ABCD(AC//BD) có 2 đường chéo BD và AC vuông góc. Biết BD=15cm, AC=20cm
a) Tính SABCD
b) Tính chiều cao ABCD
Cho hình thang ABCD(AB//CD). Có AC ⊥BD . Biết AC=6cm, BD=8cm. Tính chiều cao hình thang
Kẻ hình bình hành ABEC
\(\Rightarrow\) CE trùng DC ; AC//BE ; AC = BE = 6cm
Mà AC ⊥ BD ⇒ BE ⊥ BD
Lại có : \(S_{BDE}=\dfrac{1}{2}BE.BD=\dfrac{1}{2}BH.DE\)
\(\Rightarrow BE.BD=BH.DE\Rightarrow BH=\dfrac{BE.BD}{DE}\)
Xét tam giác BED vuông tại B Có :
\(DE^2=BE^2+BD^2=8^2+6^2=100\)
⇒ DE = 10
Do đó \(BH=\dfrac{BE.BD}{DE}=\dfrac{6.8}{10}=4,8cm\)
Cho hình thang ABCD có hay đáy AB và CD . Biết AB = 15cm, CD = 20cm ; chiều cao hình thang là 14 cm . Hai đường chéo AC và BD cắt nhau ở E
a) Tính diện tích hình thang ABCD
b) Chứng minh tam giác AED và BEC có diện tích bằng nhau
c) Tính diện tích tam giác CDE
Ta kí hiệu S (MNP) là diện tích tam giác MNP
a) Diện tích hình thang ABCD = 1/2 (AB+CD)= 1/2 (50 + 20) . 14 = 245 (cm2)b,S(AED)=S(ACD) - S(ECD) S(BEC) = S(BCD) − S(ECD) mà S(ACD) = S(BCD) nên S(AED) = S(BEC).c, BE/DE = S(AEB) / S(AED) = S(CEB) / S(CED) = S(AEB) + S(CEB) / S(AED) + S(CED) = S(ABC) / S(ACD) = AB / CD = 3/4=> S(CEB) / S(CED) = 3/4 =>S(CEB) + S(CED) / S(CED) = 7/4 => S(DBC) / S(CED) = 7/4 => S(CED) = 4/7 . S(DBC)Ta có S(DBC) = 140 cm² nên S(CED) = 80 cm².hình thang ABCD ,AB=15cm, CD=20cm, chiều cao =14cm. AC cắt BD tại E . Tính diên tích tam giác CED
Ta có tỉ số diện tích của hai tam giác ABC/ADC = 15/20 = 3/4 (Hai tam giác chung đường cao chính là đường cao hình thang nên tỉ số diện tích chính là tỉ số 2 cạnh AB và CD)
Nhưng hai tam giác này chung đáy AC nên 3/4 cũng là tỉ lệ chiều cao của chúng và đồng thời là tỉ lệ diện tích hai tam giác BEC và DEC.
Tổng diện tích tam giác BEC và DEC là tam giác BCD là: 14 x 20 : 2 = 140 (cm2)
Theo bài toán tổng - tỉ ta có: SDEC = 140 : (3 + 4) x 4 = 80 (cm2)
Diện tích của hình ABCD là (15 + 20) x 14 : 2 = 245 (cm2) Ta có tỉ số diện tích của hai tam giác ABC/ADC = 15/20 = 3/4 (Hai tam giác chung đường cao chính là đường cao hình thang nên tỉ số diện tích chính là tỉ số 2 cạnh AB và CD)
Nhưng hai tam giác này chung đáy AC nên 3/4 cũng là tỉ lệ chiều cao của chúng và đồng thời là tỉ lệ diện tích hai tam giác BEC và DEC.
Tổng diện tích tam giác BEC và DEC là tam giác BCD là: 14 x 20 : 2 = 140 (cm2)
Theo bài toán tổng - tỉ ta có: SDEC = 140 : (3 + 4) x 4 = 80 (cm2) Ta có SACD = SBCD (hai tam giác chung đáy DC và chung chiều cao)
Phần diện tích tam giác CED là phần chung nhau nên SAED = SBEC
ô hay mấy chế giải đúng rồi -_-
1/ cho hình thang cân ABCD ( AB // CD ), AB = 4cm, CD = 14cm, BC = 13cm. Tính BD.
2/ Cho hình thang cân ABCD (AB// CD ) AB = 9cm, CD = 15cm, AC vuông góc với BD. Tính đường cao BH.
Cho hình thang vuông ABCD, có \(\widehat{A}\), \(\widehat{D}\) vuông và AB = 15cm; AD = 20cm, biết AC và BD vuông góc với nhau ở O. Tính diện tích hình thang ABCD
Cho hình thang ABCD ( AB//CD) có AC vuông góc BD, AB=5cm, CD=10cm, AC=12cm.
a) Tính BD
b) Tính diện tích ABCD
c)Tính chiều cao của hình thang