xy +x+y=6 tìm x và y
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 2. Tìm hai số x và y, biết:
a) x + y = 30; xy = 221 b) x^2 + y^2 =13; xy = 6 và x + y >0
a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :
x2-30x+221=0
\(\Delta^,\)=225-221=4 ;\(\sqrt{\Delta^,}\)=2
=> pt có hai nghiệm phân biệt .
x1=13 ; x2=17
Vậy x=13;y=17 hoặc x=17; y=13
x/6=y/12 và xy=648
Tìm x và y
Ta có: \(\dfrac{x}{6}\) = \(\dfrac{y}{12}\)
⇒\(\left(\dfrac{x}{6}\right)^2\) = \(\left(\dfrac{y}{12}\right)^2\) =\(\dfrac{xy}{6.12}\)= \(\dfrac{648}{72}\) = \(9\)
⇒\(\dfrac{x^2}{36}\) = \(9\) ⇒ \(x^2\) = \(324\)
\(\dfrac{y^2}{144}=9\) ⇒ \(y^2=1296\)
⇒ \(x=\pm18\); \(y=\pm36\)
Vậy cặp số \(\left(x;y\right)\in\left\{\left(18;36\right);\left(-18;-36\right)\right\}\)
Đặt \(\dfrac{x}{6}=\dfrac{y}{12}=k\Rightarrow x=6k;y=12k\)
Ta có: \(xy=648\)
\(\Rightarrow6k.12k=648\)
\(\Rightarrow72k^2=648\)
\(\Rightarrow k^2=648:72\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
* Với \(k=1\Rightarrow x=6.1=6;y=12.1=12\)
* Với \(k=-1\Rightarrow x=6.\left(-1\right)=-6;y=12.\left(-1\right)=-12\)
Vậy \(x=6;y=12\) hoặc \(x=-6;y=-12\)
\(#Nulc`\)
Trịnh Bảo Duy An
Bạn kiểm tra lại bài nhé.
cho x và y biết x/5=y/6 và xy= 270 tìm x và y
Tìm x, y biết: \(\dfrac{x}{6}=\dfrac{y}{12}\) và xy=1800
\(\dfrac{x}{6}=\dfrac{y}{12}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=6k\\y=12k\end{matrix}\right.\)
\(\Rightarrow xy=72k^2=1800\Rightarrow k=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=30\\y=60\end{matrix}\right.\\\left\{{}\begin{matrix}x=-30\\y=-60\end{matrix}\right.\end{matrix}\right.\)
Tìm 2 stn x và y biết xy=6 và ƯCLN(x,y)=1
tìm x,y biết x^3 + y^3= 6 và xy=2
xy+x+y=6 tìm x và y
Ta có: xy+x+y=6
=> x(y+1)+y=6
=> x(y+1)+(y+1)=6+1
=> (y+1)(x+1)=7
=> y+1;x+1 thuộc Ư(7)={1;7}
Ta có bảng sau:
y+1 | 1 | 7 |
y | 0 | 6 |
x+1 | 7 | 1 |
x | 6 | 0 |
=> x,y ={6;0}
{0;6}
Ta có:
xy+x+y=6
=> x(y+1)+y+1=7
=> (x+1)(y+1)=7=1*7=(-1)(-7)
Rồi thử ra là xong
Cho x,y,z>0 và \(xy\sqrt{xy}+yz\sqrt{yz}+xz\sqrt{xz}=1\)
Tìm MinP= \(\Sigma\dfrac{x^6}{x^3+y^3}\)
Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)
\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)
mình đang gấp
Bài 5. Tìm x, y∈ ℤ, biết: a) (x – 3).(y + 4) = –7 b) (x – 1).(xy + 1) = 2 c) 5x + xy – 4y = 9 d) x.y = 6 và x + y =5
d: x+y=5
nên x=5-y
Ta có: xy=6
=>y(5-y)=6
=>y2-5y+6=0
=>(y-2)(y-3)=0
=>y=2 hoặc y=3
=>x=3 hoặc x=2
a: \(\Leftrightarrow\left(x-3;y+4\right)\in\left\{\left(1;-7\right);\left(-1;7\right);\left(-7;1\right);\left(7;-1\right)\right\}\)
hay \(\left(x,y\right)\in\left\{\left(4;-11\right);\left(2;3\right);\left(-4;-3\right);\left(10;-5\right)\right\}\)