Phân tích đa thức thành nhân tử
x - y - căn x - căn y
Phân tích đa thức thành nhân tử
x căn x+ y căn y+x-y
\(=\left(x\sqrt{x}+y\sqrt{y}\right)+\left(x-y\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}+\sqrt{x}-\sqrt{y}\right)\)
Phân tích đa thức thành nhân tử
x căn y-y căn x+x-y
\(=\left(x\sqrt{y}-y\sqrt{x}\right)+\left(x-y\right)\)
\(=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}+\sqrt{x}+\sqrt{y}\right)\)
phân tích đa thức thành nhân tử
x căn y - y căn x
\(x\sqrt{y}-y\sqrt{x}=\sqrt{x^2}.\sqrt{y}-\sqrt{y^2}.\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(x\sqrt{y}-y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
`x \sqrt{y} - y \sqrt{x}`
`= (\sqrt{x})^2 . \sqrt{y} - (\sqrt{y})^2 . \sqrt{x}`
`= \sqrt{x} . \sqrt{y} . (\sqrt{x} - \sqrt{y})`
`= \sqrt{xy} . (\sqrt{x} - \sqrt{y})`
phân tích đa thức thành nhân tử x-y - căn bậc hai(x) - căn bậc hai(y)
\(x-y-\sqrt{x}-\sqrt{y}\\ =\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\\ =\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)
Phân tích đa thức thành nhân tử
x^3+x^2y-x-y
\(=x^2\left(x+y\right)-\left(x+y\right)=\left(x^2-1\right)\left(x+y\right)=\left(x-1\right)\left(x+1\right)\left(x+y\right)\)
= (x^3 - x) + (x^2y - y)
= x(x^2 - 1) + y(x^2 - 1)
= ( x^2 -1)(x+y)
Phân tích đa thức thành nhân tử
căn x + căn y + căn xy +1
\(\sqrt{x}+\sqrt{y}+\sqrt{xy}+1\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{x}.\sqrt{y}+1\)
\(=\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)\)
\(=\left(\sqrt{x}+1\right)\left(\sqrt{y}+1\right)\)
( căn x + 1 ) + ( căn y + căn xy )
( căn x + 1 ) + căn y.( căn x + 1)
( căn x +1 )(căn y + 1 )
phân tích đa thức thành nhân tử
x mũ 4 + x mũ 2 y mũ 2 cộng y mũ 4
x^4+x^2y^2+y^4
=x^4+2x^2y^2+y^4-x^2y^2
=(x^2+y^2)^2-x^2y^2
=(x^2-xy+y^2)(x^2+xy+y^2)
phân tích các đa thức sau thành nhân tử
x^2-9x-y^2-9y
\(x^2-9x-y^2-9y\)
\(=\left(x^2-y^2\right)-\left(9x+9y\right)\)
\(=\left(x-y\right)\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-9\right)\)
phân tích đa thức thành nhân tử
x^2-16-y^2+8y
Thu gọn
2x(3x+1)+(x+3)(2x-5)
(x+5)^2-(4x-1)(4x+1)
Câu 1:
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\cdot\left(x+y-4\right)\)