Những câu hỏi liên quan
H24
Xem chi tiết
NT
2 tháng 8 2023 lúc 14:21

\(\left(2x+5\right)\left(y-3\right)=22\)

\(\Rightarrow\left(2x+5\right);\left(y-3\right)\in\left\{1;2;11;22\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-2;25\right);\left(-\dfrac{3}{2};14\right);\left(3;5\right);\left(\dfrac{17}{2};4\right)\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(3;5\right)\right\}\left(\left(x;y\inℤ^+\right)\right)\)

Bình luận (0)
H24
Xem chi tiết
GD

\(\left(2x+5\right)\left(y-3\right)=22\\ \Rightarrow\left(2x+5\right);\left(y-3\right)\inƯ\left(22\right)=\left\{1;2;11;22\right\}\\ TH1:2x+5=1\Rightarrow x=-2\left(loại\right);\left(y-3\right)=22\Rightarrow y=25\\ TH2:2x+5=2\Rightarrow x=-\dfrac{3}{2}\left(loại\right);\left(y-3\right)=11\Rightarrow y=14\\ TH3:2x+5=11\Rightarrow x=3;\left(y-3\right)=2\Rightarrow y=5\\ TH4:2x+5=22\Rightarrow x=\dfrac{17}{2}\left(loại\right);\left(y-3\right)=1\Rightarrow y=4\\Vậy:\left(x;y\right)=\left(3;5\right)\)

Bình luận (0)
ML
2 tháng 8 2023 lúc 9:26

(2x + 5)(y - 3) = 22

Ư(22) = {-1,-2,-11,-22,1,2,11,22}

=> Ta có bảng:

2x+5-1-2-11-22121122
y-3-22-11-2-1221121
x-3-7/2-8-27/2-2-3/2317/2
y-19-812251454

Vậy ta có cặp x,y nguyên dương thỏa mãn là: (3;5)

Bình luận (0)
PA
Xem chi tiết
H24
Xem chi tiết
LC
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
TP
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
CA
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
NL
10 tháng 1 2021 lúc 21:47

\(x^3+y^3+3xy\left(x+y\right)+\dfrac{1}{27}-3xy\left(x+y\right)-xy=0\)

\(\Leftrightarrow\left(x+y\right)^3+\dfrac{1}{27}-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x+y+\dfrac{1}{3}\right)\left[\left(x+y\right)^2-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}\right]-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow x^2+y^2-xy-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-\dfrac{1}{3}\right)^2+\left(y-\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow x=y=\dfrac{1}{3}\Rightarrow P=...\)

Bình luận (0)
IY
Xem chi tiết
HN
Xem chi tiết
TN
22 tháng 8 2017 lúc 22:20

Áp dụng BĐT AM-GM ta có:

\(S=x+y+\frac{1}{x}+\frac{1}{y}\)

\(=x+\frac{4}{9x}+y+\frac{4}{9y}+\frac{5}{9}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\ge2\sqrt{x\cdot\frac{4}{9x}}+2\sqrt{y\cdot\frac{4}{9y}}+\frac{5}{9}\cdot\frac{4}{x+y}\)

\(\ge2\cdot\frac{2}{3}+2\cdot\frac{2}{3}+\frac{5}{9}\cdot\frac{4}{\frac{4}{3}}=\frac{13}{3}\)

Khi \(x=y=\frac{2}{3}\)

Bình luận (0)
TT
Xem chi tiết
YP
Xem chi tiết
TH
9 tháng 2 2023 lúc 14:16

a) \(\left(x+y+1\right)^3=x^3+y^3+7\)

\(\Leftrightarrow\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)+3\left(x+y\right)\left(x+y+1\right)+1=x^3+y^3+7\)

\(\Leftrightarrow3\left(x+y\right)\left(x+y+xy+1\right)=6\)

\(\Leftrightarrow\left(x+y\right)\left[x\left(1+y\right)+1+y\right]=2\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(x+y\right)=2\)

\(\Rightarrow x+1,y+1,x+y\) là các ước của 2.

Ta thấy 6 có 2 dạng phân tích thành tích 3 số nguyên là \(\left(2;1;1\right)\) và\(\left(2;-1;-1\right)\).

- Xét trường hợp \(\left(2;1;1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=1\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=2\\x+y=1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=1\\y+1=1\\x+y=2\end{matrix}\right.\)

Giải ra ta có \(\left(x,y\right)=\left(1;0\right),\left(0;1\right)\).

- Xét trường hợp \(\left(2;-1;-1\right)\). Ta có 3 trường hợp nhỏ:

\(\left\{{}\begin{matrix}x+1=2\\y+1=-1\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=2\\x+y=-1\end{matrix}\right.\) ; \(\left\{{}\begin{matrix}x+1=-1\\y+1=1\\x+y=2\end{matrix}\right.\).

Giải ra ta có: \(\left(x;y\right)=\left(1;-2\right),\left(-2;1\right)\).

Vậy \(\left(x;y\right)=\left(0;1\right),\left(1;0\right),\left(1;-2\right),\left(-2;1\right)\)

 

 

Bình luận (2)
TH
9 tháng 2 2023 lúc 14:28

b) \(y^2+2xy-8x^2-5x=2\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-\left(9x^2+5x\right)=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x^2+\dfrac{5}{9}x+\dfrac{25}{324}\right)+\dfrac{25}{36}=2\)

\(\Leftrightarrow\left(x+y\right)^2-9\left(x+\dfrac{5}{18}\right)^2=\dfrac{47}{36}\)

\(\Leftrightarrow6^2.\left(x+y\right)^2-3^2.6^2\left(x+\dfrac{5}{18}\right)^2=47\)

\(\Leftrightarrow\left(6x+6y\right)^2-\left(18x+5\right)^2=47\)

\(\Leftrightarrow\left(6x+6y-18x-5\right)\left(6x+6y+18x+5\right)=47\)

\(\Leftrightarrow\left(6y-12x-5\right)\left(24x+6y+5\right)=47\)

\(\Rightarrow\)6y-12x-5 và 24x+6y+5 là các ước của 47.

Lập bảng:

6y-12x-5147-1-47
24x+6y+5471-47-1
x1\(\dfrac{-14}{9}\left(l\right)\)\(\dfrac{-14}{9}\left(l\right)\)1
y3\(\dfrac{50}{9}\left(l\right)\)\(-\dfrac{22}{9}\left(l\right)\)-5

Vậy pt đã cho có 2 nghiệm (x;y) nguyên là (1;3) và (1;-5)

 

Bình luận (0)