Giải pt sau: \(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\) = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
giải pt sau
\(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}+1}-\dfrac{2}{\sqrt{x}}\right):\dfrac{2-\sqrt{x}}{x-1}\)
mình nhầm mẫu nhé :v mình làm lại
\(=\left(\dfrac{x-\sqrt{x}-2x+4\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\right):\dfrac{2-\sqrt{x}}{x-1}\)
\(=\dfrac{-x+3\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{2-\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2-\sqrt{x}\right)\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giải PT sau
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\left(x\ge1\right)\)
\(< =>5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}=6+\sqrt{x-1}\)
\(< =>30\sqrt{x-1}-15\sqrt{x-1}=36+6\sqrt{x-1}\)
\(< =>9\sqrt{x-1}=36\\ < =>\sqrt{x-1}=4\\ < =>x-1=16\\ < =>x=17\left(tm\right)\)
\(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{1}{3}\sqrt{x-1}-\sqrt{x-1}=6\)
=>\(1.5\cdot\sqrt{x-1}=6\)
=>\(\sqrt{x-1}=4\)
=>x-1=16
=>x=17
giải pt : \(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}+\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}+...+\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)
Ta có :
\(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{\left(\sqrt{x+1}+\sqrt{x+2}\right)\left(\sqrt{x+1}-\sqrt{x+2}\right)}=\dfrac{\sqrt{x+1}-\sqrt{x+2}}{-1}=-\sqrt{x+1}+\sqrt{x+2}\)
Tương tự :
\(\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}=-\sqrt{x+2}+\sqrt{x+3}\)
\(\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}=-\sqrt{x+3}+\sqrt{x+4}\)
....
\(\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2010}}=-\sqrt{x+2019}+\sqrt{x+2010}\)
Từ những ý trên , pt trở thành :
\(-\sqrt{x+1}+\sqrt{x+2}-\sqrt{x+2}+\sqrt{x+3}-\sqrt{x+3}+\sqrt{x+4}-.....-\sqrt{x+2019}+\sqrt{x+2020}=11\)
\(\Leftrightarrow\sqrt{x+2020}-\sqrt{x+1}=11\)
\(\Leftrightarrow x+2020-2\sqrt{\left(x+2020\right)\left(x+1\right)}+x+1=121\)
\(\Leftrightarrow2x+1900=2\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x+950=\sqrt{\left(x+1\right)\left(x+2020\right)}\)
\(\Leftrightarrow x^2+1900x+902500=x^2+2021x+2020\)
\(\Leftrightarrow121x-900480=0\)
\(\Leftrightarrow x=\dfrac{900480}{121}\)
rút gọn pt sau
\(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}+1}-\dfrac{2}{\sqrt{x}}\right):\dfrac{2-\sqrt{x}}{x-1}\)
\(\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}+1}-\dfrac{2}{\sqrt{x}}\right):\dfrac{2-\sqrt{x}}{x-1}.\\ =\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)^2}-\dfrac{2}{\sqrt{x}}\right).\dfrac{x-1}{2-\sqrt{x}}.\\ =\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}}\right).\dfrac{x-1}{2-\sqrt{x}}.\\ =\dfrac{\sqrt{x}-2\left(\sqrt{x-1}\right)}{\sqrt{x}.\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2-\sqrt{x}}.\)
\(=\dfrac{2-\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}+1}{2-\sqrt{x}}.\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}}.\)
1)giải pt: 1+\(\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
2)giải pt: \(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
giải pt :
a,\(\sqrt[3]{\dfrac{2x}{x+1}}\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
b,\(\sqrt[5]{\dfrac{16x}{x-1}}\sqrt[5]{\dfrac{x-1}{16xx}}=\dfrac{5}{2}\)
a, \(\sqrt[3]{\dfrac{2x}{x+1}}.\sqrt[3]{\dfrac{x+1}{2x}}=2\)
⇔ \(\left\{{}\begin{matrix}1=2\\x\ne0\&x\ne-1\end{matrix}\right.\)
Phương trình vô nghiệm
b, x = \(\dfrac{8}{125}\)
giải pt :
a, (x+5)(2-x)=3\(\sqrt{x^2+3x}\)
b, \(\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
c,\(\sqrt[5]{\dfrac{16x}{x-1}}+\sqrt[5]{\dfrac{x-1}{16x}}=\dfrac{5}{2}\)
d, \(\sqrt{5x^2+10x+1}=7-2x-x^2\)
e, \(\sqrt{2x^2+4x+1}=1-2x-x^2\)
GIẢI PT
\(\sqrt{x^2+10x+25}=4\)
\(\sqrt{x-2}+3=5\)
\(\sqrt{x^2-x+4}-x^2+x-2=0\)
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=\dfrac{1}{3}\)
1) \(\Leftrightarrow\sqrt{\left(x+5\right)^2}=4\)
\(\Leftrightarrow\left|x+5\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=4\\x+5=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-9\end{matrix}\right.\)
2) \(ĐK:x\ge2\)
\(\Leftrightarrow\sqrt{x-2}=2\)
\(\Leftrightarrow x-2=4\Leftrightarrow x=6\left(tm\right)\)
3) \(\Leftrightarrow\left(x^2-x+4\right)-\sqrt{x^2-x+4}+\dfrac{1}{4}=\dfrac{9}{4}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+4}-\dfrac{1}{2}\right)^2=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}-\dfrac{1}{2}=\dfrac{3}{2}\\\sqrt{x^2-x+4}-\dfrac{1}{2}=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x+4}=2\\\sqrt{x^2-x+4}=-1\left(VLý\right)\end{matrix}\right.\)
\(\Leftrightarrow x^2-x+4=4\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4) \(ĐK:x\ge0\)
\(\Leftrightarrow3\sqrt{x}-3=\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{25}{4}\left(tm\right)\)