Những câu hỏi liên quan
H24
Xem chi tiết
HM
24 tháng 8 2023 lúc 8:58

\(a,0,1^{2-x}>0,1^{4+2x}\\ \Leftrightarrow2-x>2x+4\\ \Leftrightarrow3x< -2\\ \Leftrightarrow x< -\dfrac{2}{3}\)

\(b,2\cdot5^{2x+1}\le3\\ \Leftrightarrow5^{2x+1}\le\dfrac{3}{2}\\ \Leftrightarrow2x+1\le log_5\left(\dfrac{3}{2}\right)\\ \Leftrightarrow2x\le log_5\left(\dfrac{3}{2}\right)-1\\ \Leftrightarrow x\le\dfrac{1}{2}log_5\left(\dfrac{3}{2}\right)-\dfrac{1}{2}\\ \Leftrightarrow x\le log_5\left(\dfrac{\sqrt{30}}{10}\right)\)

Bình luận (0)
HM
24 tháng 8 2023 lúc 9:01

c, ĐK: \(x>-7\)

\(log_3\left(x+7\right)\ge-1\\ \Leftrightarrow x+7\ge\dfrac{1}{3}\\ \Leftrightarrow x\ge-\dfrac{20}{3}\)

Kết hợp với ĐKXĐ, ta có:\(x\ge-\dfrac{20}{3}\)

d, ĐK: \(x>\dfrac{1}{2}\)

\(log_{0,5}\left(x+7\right)\ge log_{0,5}\left(2x-1\right)\\ \Leftrightarrow x+7\le2x-1\\ \Leftrightarrow x\ge8\)

Kết hợp với ĐKXĐ, ta được: \(x\ge8\)

Bình luận (0)
DA
Xem chi tiết
H24
16 tháng 11 2021 lúc 15:06

\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)

\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)

Bình luận (0)
TT
Xem chi tiết
AT
12 tháng 6 2017 lúc 23:22

a) \(\left(3-2x\right)\left(x+1\right)\ge0\)

TH1:\(\left\{{}\begin{matrix}3-2x\ge0\\x+1\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le1,5\\x\ge-1\end{matrix}\right.\)\(\Rightarrow-1\le x\le1,5\)

TH2:\(\left\{{}\begin{matrix}3-2x\le0\\x+1\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge1,5\\x\le-1\end{matrix}\right.\)(vô lý)

Vậy.............................

b) \(\left(2x-4\right)\left(x+3\right)\le0\)

TH1:\(\left\{{}\begin{matrix}2x-4\ge0\\x+3\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\) (vô lý)

TH2: \(\left\{{}\begin{matrix}2x-4\le0\\x+3\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ge-3\end{matrix}\right.\)\(\Rightarrow-3\le x\le2\)

Vậy...............................

Bình luận (0)
DT
Xem chi tiết
NT
8 tháng 9 2023 lúc 15:33

d) \(2x^2+5x-7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\) \(\left(a+b+c=1\right)\)

Bình luận (0)
NT
8 tháng 9 2023 lúc 18:31

loading...  

Bình luận (0)
MT
Xem chi tiết
TH
Xem chi tiết
TH
18 tháng 3 2018 lúc 14:09
https://i.imgur.com/pzS21PI.jpg
Bình luận (0)
NV
31 tháng 3 2019 lúc 10:10

a,\(2\left(2x-3\right)\ge5\left(2+x\right)+13\)

\(\Leftrightarrow4x-6\ge10+5x+13\)

\(\Leftrightarrow4x-5x\ge10+13+6\)

\(\Leftrightarrow-x\ge29\)

\(\Leftrightarrow x\ge-29\)

Bình luận (0)
TN
15 tháng 8 2019 lúc 8:55

a,2(2x−3)≥5(2+x)+132(2x−3)≥5(2+x)+13

⇔4x−6≥10+5x+13⇔4x−6≥10+5x+13

⇔4x−5x≥10+13+6⇔4x−5x≥10+13+6

⇔−x≥29⇔−x≥29

⇔x≥−29

tick và theo dõi giúp mình nha

Bình luận (0)
TP
Xem chi tiết
LL
9 tháng 9 2021 lúc 9:47

a) \(2x\left(x+4\right)-\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x^2+8x-2x^2-x+3=0\)

\(\Leftrightarrow7x=-3\Leftrightarrow x=-\dfrac{3}{7}\)

b) \(x^2-2x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Bình luận (0)
NM
9 tháng 9 2021 lúc 9:48

\(a,\Leftrightarrow2x^2+8x-2x^2-x+3=0\\ \Leftrightarrow7x=-3\\ \Leftrightarrow x=-\dfrac{3}{7}\\ b,x^2-2x-3=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Bình luận (0)
NT
9 tháng 9 2021 lúc 9:52

a: Ta có: \(2x\left(x+4\right)-\left(x-1\right)\cdot\left(2x+3\right)=0\)

\(\Leftrightarrow2x^2+8x-2x^2-3x+2x+3=0\)

\(\Leftrightarrow7x=-3\)

hay \(x=-\dfrac{3}{7}\)

b: ta có: \(x^2-2x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Bình luận (0)
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:33

a) Tam thức \(f(x) = {x^2} - 1\) có \(\Delta  = 4 > 0\)nên f(x) có 2 nghiệm phân biệt \({x_1} =  - 1;{x_2} = 1\)

Mặt khác a=1>0, do đó ta có bảng xét dấu:

 

Tập nghiệm của bất phương trình là \(\left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right)\)

b) Tam thức \(g(x) = {x^2} - 2x - 1\) có \(\Delta  = 8 > 0\) nên g(x) có 2 nghiệm phân biệt \({x_1} = 1 - \sqrt 2 ;{x_2} = 1 + \sqrt 2 \)

Mặt khác a = 1 > 0, do đó ta có bảng xét dấu:

 

Tập nghiệm của bất phương trình là \(\left( {1 - \sqrt 2 ;1 + \sqrt 2 } \right)\)

c) Tam thức \(h(x) =  - 3{x^2} + 12x + 1\) có\(\Delta ' = 39 > 0\)nên h(x) có 2 nghiệm phân biệt \({x_1} = \frac{{6 - \sqrt {39} }}{3};{x_2} = \frac{{6 + \sqrt {39} }}{3}\)

Mặt khác a = -3 < 0, do đó ta có bảng xét dấu:

 

Tập nghiệm của bất phương trình là \(\left( { - \infty ; \frac{{6 - \sqrt {39} }}{3}} \right] \cup \left[ {\frac{{6 + \sqrt {39} }}{3}; + \infty } \right)\)

d) Tam thức \(k(x) = 5{x^2} + x + 1\) có \(\Delta  =  - 19 < 0\), hệ số a=5>0 nên k(x) luôn dương ( cùng dấu với a) với mọi x, tức là \(5{x^2} + x + 1 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm

Bình luận (0)
MT
Xem chi tiết