C=2+2 mũ 2 + 2 mũ 3 +...+2 mũ 60 chia hết cho 3,7,15
Ai cíu tui câu này dới
CHỨNG MINH RẰNG
A = 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 60 chia hết cho 3,7,15
B= 3 +3 mũ 3 + 3 mũ 5 +.........+3 mũ 1991 chia hết cho 13 , 41
D= 11 mũ 9 + 11 mũ 8 + 11 mũ 7 +.........+11 +1 chia hết cho 5
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
tìm a,b để f(x) chia hết cho g(x)
f(x)=x mũ 4 - 9x mũ 3 + 21x mũ 2 + ax + b , g(x) = x mũ 2 - x -2
ai đó cíu vs
f(x) = x4 - 9x3 + 21x2 + ax + b
g(x) = x2 - x - 2
Ta có f(x) bậc 4 ; g(x) bậc 2
=> Thương là một đa thức bậc 2
Gọi đa thức thương đó là h(x) = x2 + cx + d
Ta có f(x) chia hết cho g(x)
<=> x4 - 9x3 + 21x2 + ax + b = ( x2 - x - 2 )( x2 + cx + d )
<=> x4 - 9x3 + 21x2 + ax + b = x4 + cx3 + dx2 - x3 - cx2 - dx - 2x2 - 2cx - 2d
<=> x4 - 9x3 + 21x2 + ax + b = x4 + ( c - 1 )x3 + ( d - c - 2 )x2 + ( -d - 2c )x - 2d
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}c-1=-9\\d-c-2=21\\-d-2c=a\end{cases}};-2d=b\)
\(\Rightarrow\hept{\begin{cases}c=-8\\d=15\\a=1\end{cases}};b=-30\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=-30\end{cases}}\)
Vậy ...
Câu1 :Cho ba STN a, b, c không chia hết cho 4. Khi chia 4 được số dư khác nhau. Chứng minh a+b+c không chia hết cho 4.
Câu 2: Chứng tỏ rằng :
a) Số có dạng aaa aaa chia hết cho 7 và 37.
b) a+3.b chia hết cho 2 với a+b chia hết cho 2 ( a,b thuộc N )
Câu 3 :Chứng tỏ rằng :
a) 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45.
b) 16 mũ 5 + 2 mũ 15 chia hết cho 33
c) 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 60 chia hết cho 15 và 21.
Chứng minh B= 2 mũ 2+ 2 mũ 3 + 2 mũ 4+...+ 2 mũ 121 chia hết cho 3
Cứu tui, tui đang cần gấp
\(B=2^2+2^3+2^4+...+2^{121}\\=(2^2+2^3)+(2^4+2^5)+(2^6+2^7)+...+(2^{120}+2^{121})\\=2^2\cdot(1+2)+2^4\cdot(1+2)+2^6\cdot(1+2)+...+2^{120}\cdot(1+2)\\=2^2\cdot3+2^4\cdot3+2^6\cdot3+...+2^{120}\cdot3\\=3\cdot(2^2+2^4+2^6+...+2^{120})\)
Vì \(3\cdot(2^2+2^4+2^6+...+2^{120})\vdots3\)
nên \(B\vdots3\)
giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5
b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60
c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7
con khong biet
BÀI 2: Chứng minh
a) 11 mũ 6 + 11 mũ 5 chia hết cho 4
b) 7 mũ 15 - 7 mũ 14 chia hết cho 42
c) A = 2 + 2 mũ 2 + 2 mũ 3 +.......+ 2 mũ 60 chia hết cho 7
a)116+115=(..................1)+(..................1)=..........................2
Vì có chữ số tận cùng là 2 nên chia hết cho 4
Bài này thì chắc phải dùng đồng dư -_-
a) Ta có:
11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5 = -1 (mod 4) => 115 + 1 chia hết cho 4
=> 116 đồng dư với (-1)6 (mod 4)
=> 116 đồng dư với 1 (mod 4)
=> 116 - 1 chia hết cho 4
=> (116 - 1) + (115 + 1) chia hết cho 4
=> 116 + 115 chia hết cho 4
Cho mình hỏi câu này với: 2 mũ 1+ 2 mũ 2+2 mũ 3+2 mũ 4 +...+2 mũ 2014 chia hết cho 2; cho 3; và cho 4 nhé.
Cảm Ơn Mọi Người Nhiều! -_-
2+2^2+2^3+2^4+...+2^2014 chia hết cho 2 vì toàn số chẵn
2+2^2+2^3+2^4+...+2^2014
=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2013+2^2014)
=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^2013(1+2)
=2.3+2^3.3+2^5.3+...+2^2013.3
=3(2+2^3+2^5+...+2^2013) chia hết cho 3
a) A=19 mũ 2005+ 11 mũ 2004 chia hết cho 10
b)B= 2 + 2 mũ 2 + 2 mũ 3 +..... + 2 mũ 60 chia hết cho 3 ; 7 ; 15
giúp mk với
b: \(B=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\cdot\left(2+...+2^{59}\right)⋮3\)
\(B=2+2^2+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Chứng minh rằng: 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 59 + 2 mũ 60 chia hết cho 3.
\(2+2^2+2^3+2^4+...+2^{59}+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{59}\right)\\ =3\left(2+2^3+...+2^{59}\right)⋮3\)