tìm nghiệm của đa thức
a) x^2 + 2x +3
b) x^2 - 3x
c) 2x - 8x^3
d) 2/3- 6x^2
Bài 3. Tìm nghiệm của các đa thức : a) 3x-2 b) 9-x^2 c) x(2x-1) d) x^2+3 Bài 4Tìm nghiệm của đa thức bằng cách áp dụng công thức: X^2+(a+b)x+ab =(x+a)(x+b) a) x^2+8x+15 b) x^2-6x+8 c) x^2+x-6
Tìm nghiệm của các đa thức a) A=3x-15 b) B=(x-2) (x+3) c) C=(2x-1) (x^2+2) d) D=3x^2-6x e) E=2x(x-3) -5(x-3)
a/\(3x-15=0\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy nghiệm của A là x = 5
b/\(\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy nghiệm của B là \(x\in\left\{2;-3\right\}\)
c/\(\left(2x-1\right)\left(x^2+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=0\\x^2+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\x^2=-2\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy nghiệm của C là \(x=\dfrac{1}{2}\)
d/\(3x^2-6x=0\)
\(\Rightarrow x\left(3x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\3x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy nghiệm của D là \(x\in\left\{0;2\right\}\)
e/\(2x\left(x-3\right)-5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=5\\x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=3\end{matrix}\right.\)
Vậy nghiệm của E là \(x\in\left\{\dfrac{5}{2};3\right\}\)
a) Thu gọn và sắp xếp các hạng tử của đa thức sau theo lúy thừa giảm của biến
A(x)=5x^2-1/2x+8x^4-3x^2+9
b) Cho 2 đa thức
B(x)=12x^4+6x^3-1/2x+3,C(x)=-12x^4-2x^3+5x+1/2
Tính B(x)+C(x) và B(x)-C(x) tính nghiệm của đa thức K(x)=-6x+30
cho f(x)= ax^2+b+c. Chứng tỏ rằng nếu a+b+c=0 thì x=1 là 1 nghiệm của đa thức đó. Nếu a-b+c=0 thì x=-1 là 1 nghiệm của đa thức đó.
Áp dụng để tìm 1 nghiệm của đa thức sau:
A= 8x^2-6x-2
B= -2x^2-5-7
C= 8x^2+11x+3
D= -3x^2-7x-4
a,Tìm x biết:(1/4x-1)+(5/6x-2)-(3/8x+5)=3,5
b, Tìm nghiệm các của đa thức: x2+1/2x và (3x+5)x(5x-2x)
Tìm nghiệm các đa thức:
a) -3x^3+5x^2-2x
b) -1/2x^4+1/8x^2
c)-1/3(3x+1)(5-2x)(2013x-2012)
d)3x^2-x-10
e)x^2-4x+3
cm đa thức ko có nghiệm
a)x^2+x-1
b)2013x^2012+1
c)4x^2-4x+3
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm nghiệm của đa thức: a)3.(2x^2-4x-3)-2.(2x2-6x-9)
b) (3x+5).(2x-4)
c) (x^2-2x+2)^2-(x^2-2x+2)
cho 2 đa thức
A(X) = 5X^4-5 + 6X^3 +X^4 -5X^-12
B(X) = 8X^4 +2X^3 -2X^4+4X^3 -5X -15 -2X^2
a) thu gon A (X) , B(X) VÀ sắp xếp các đa thức theo thứ tự giảm dần
b) tìm nghiệm của đa thức C(x) , biết C(X) = A(X)-B(X)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2