NH

 tìm nghiệm của đa thức 

a) x^2 + 2x +3 

b) x^2 - 3x 

c) 2x - 8x^3 

d) 2/3- 6x^2

H9
20 tháng 7 2023 lúc 16:06

a) Sữa đề: \(x^2+2x-3=0\)

\(\Rightarrow x^2-x+3x-3=0\)

\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

b) \(x^2-3x=0\)

\(\Rightarrow x\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

c) \(2x-8x^3=0\)

\(\Rightarrow2x\left(1-4x^2\right)=0\)

\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

d) \(\dfrac{2}{3}-6x^2=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)

\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (0)
TT
20 tháng 7 2023 lúc 16:00

a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.

Bình luận (0)
NT
20 tháng 7 2023 lúc 16:09

a) \(x^2+2x+3=0\Rightarrow x^2+2x+1+2=0\Rightarrow\left(x+1\right)^2+2=0\left(1\right)\)

mà \(\left(x+1\right)^2\ge0\)

\(\left(1\right)\Rightarrow\) Đa thức có vô số nghiệm

b) \(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x=0;x=3\)

\(\Rightarrow x\in\left\{0;3\right\}\)

c) \(2x-8x^3=0\Rightarrow2x\left(1-4x^2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-4x^2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow x\in\left\{0;\pm\dfrac{1}{2}\right\}\)

d) \(\dfrac{2}{3}-6x^2=0\Rightarrow6x^2=\dfrac{2}{3}\Rightarrow x^2=\dfrac{1}{9}\Rightarrow x=\pm\dfrac{1}{3}\)

\(\Rightarrow x\in\left\{\pm\dfrac{1}{3}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
KV
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NV
Xem chi tiết
NA
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết