TM

Những câu hỏi liên quan
PN
Xem chi tiết
DV
Xem chi tiết
HQ
31 tháng 7 2021 lúc 18:17

\(4x^2-25y^2\)

\(\left(2x\right)^2-\left(5y\right)^2\)

\(\left(2x-5y\right)\left(2x+5y\right)\)

chọn c

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
SC
Xem chi tiết
NL
Xem chi tiết
NU
20 tháng 9 2019 lúc 11:57

\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)

\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)

\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)

Bình luận (0)
NL
20 tháng 9 2019 lúc 12:08

mọi người giúp mk câu b, c, d còn lại nha

Bình luận (0)
QA
Xem chi tiết
NT
7 tháng 12 2022 lúc 14:07

a: \(=\dfrac{3x-x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)

b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}\)

\(=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)

c: \(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)

\(=\dfrac{3\left(1+2x\right)}{2\left(x+4\right)}\)

d: \(=\dfrac{12x}{8x^3}\cdot\dfrac{15y^4}{5y^3}=\dfrac{3}{2x^2}\cdot3y=\dfrac{9y}{2x^2}\)

f: \(=\dfrac{\left(x-2\right)\left(x+2\right)}{3\left(x+4\right)}\cdot\dfrac{x+4}{2\left(x-2\right)}=\dfrac{x+2}{6}\)

 

Bình luận (0)
H24
Xem chi tiết
H9
1 tháng 9 2023 lúc 12:55

a) \(3x^2-3xy-5x+5y\)

\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

b) \(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left[x^2-\left(y+1\right)^2\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

c) \(x^2+1+2x-y^2\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

d) \(x^2+4x-2xy-4y+y^2\)

\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)^2+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y+4\right)\)

e) \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

f) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x-y+1\right)\left(x+y+1\right)\)

Bình luận (0)
NT
31 tháng 8 2023 lúc 21:24

a: =3x(x-y)-5(x-y)

=(x-y)(3x-5)

b: \(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

d:

Sửa đề: x^2+4x-2xy-4y+y^2

=x^2-2xy+y^2+4x-4y

=(x-y)^2+4(x-y)

=(x-y)(x-y+4)

e: =x(x^2-2x+1)

=x(x-1)^2

f: =2(x^2+2x+1-y^2)

=2[(x+1)^2-y^2]

=2(x+1+y)(x+1-y)

Bình luận (0)
Vi
Xem chi tiết
AH
29 tháng 12 2022 lúc 18:37

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

Bình luận (0)
BS
Xem chi tiết
LL
6 tháng 11 2021 lúc 14:46

\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)

\(minA=4\Leftrightarrow x=2\)

\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)

\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)

\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)

\(minC=-8\Leftrightarrow x=-1\)

\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)

\(maxD=-4\Leftrightarrow x=1\)

\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)

\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)

\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)

\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)

\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)

\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)

\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Bình luận (1)