Những câu hỏi liên quan
A4
Xem chi tiết
AH
26 tháng 8 2023 lúc 23:50

Lời giải:
a.

\(=\sqrt{5+2.2\sqrt{5}+2^2}-\sqrt{5-2.2\sqrt{5}+2^2}\)

$=\sqrt{(\sqrt{5}+2)^2}-\sqrt{(\sqrt{5}-2)^2}$

$=|\sqrt{5}+2|-|\sqrt{5}-2|=(\sqrt{5}+2)-(\sqrt{5}-2)=4$

b.

$=\sqrt{3-2.3\sqrt{3}+3^2}+\sqrt{3+2.3.\sqrt{3}+3^2}$

$=\sqrt{(\sqrt{3}-3)^2}+\sqrt{(\sqrt{3}+3)^2}$

$=|\sqrt{3}-3|+|\sqrt{3}+3|$

$=(3-\sqrt{3})+(\sqrt{3}+3)=6$

c.

$=\sqrt{2+2.3\sqrt{2}+3^2}-\sqrt{2-2.3\sqrt{2}+3^2}$

$=\sqrt{(\sqrt{2}+3)^2}-\sqrt{(\sqrt{2}-3)^2}$
$=|\sqrt{2}+3|-|\sqrt{2}-3|$

$=(\sqrt{2}+3)-(3-\sqrt{2})=2\sqrt{2}$

Bình luận (0)
NT
Xem chi tiết
ML
18 tháng 10 2017 lúc 19:22

Mình dùng máy casio nhé bạn.

KQ; 0,6151214812.

Bạn có cần cách làm không?

Bình luận (0)
NP
Xem chi tiết
NT
27 tháng 7 2021 lúc 22:33

a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(=2\sqrt{5}+2+\sqrt{5}-2\)

\(=3\sqrt{5}\)

b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)

\(=3-2\sqrt{2}+2\sqrt{2}-1\)

=2

c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)

\(=2-\sqrt{2}+3\sqrt{2}-2\)

\(=2\sqrt{2}\)

Bình luận (0)
CD
Xem chi tiết
PN
19 tháng 8 2020 lúc 9:07

\(a,\frac{2}{\sqrt{2}-1}-\frac{2}{\sqrt{2}+1}=\frac{2\left(\sqrt{2}+1\right)-2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(=\frac{2\sqrt{2}+2-2\sqrt{2}+2}{\sqrt{2}^2-1^2}=\frac{4}{2-1}=4\)

\(b,\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{4+2.2.\sqrt{2}+2}+\sqrt{4-2.2.\sqrt{2}+2}\)

\(=\sqrt{2^2+2.2.\sqrt{2}+\sqrt{2}^2}+\sqrt{2^2-2.2.\sqrt{2}+\sqrt{2}^2}\)

\(=\sqrt{\left(2+\sqrt{2}\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=|2+\sqrt{2}|+|2-\sqrt{2}|=2+2=4\)

\(c,\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)

\(=\sqrt{4+2.2.\sqrt{5}+5}+\sqrt{4-2.2.\sqrt{5}+5}\)

\(=\sqrt{2^2+2.2.\sqrt{5}+\sqrt{5}^2}+\sqrt{2^2-2.2.\sqrt{5}+\sqrt{5}^2}\)

\(=\sqrt{\left(2+\sqrt{5}\right)^2}+\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(=|2+\sqrt{5}|+|2-\sqrt{5}|=2+\sqrt{5}+\sqrt{5}-2=2\sqrt{5}\)

câu d bạn cứ nhân bình thường

Bình luận (0)
 Khách vãng lai đã xóa
AQ
Xem chi tiết
LA
Xem chi tiết
H24
28 tháng 6 2023 lúc 19:08

\(a,P=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{4-x}\right):\dfrac{x+5\sqrt{x}+6}{x-4}\left(dk:x\ge0,x\ne4\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+2}+\dfrac{4x}{x-4}\right).\dfrac{x-4}{x+2\sqrt{x}+3\sqrt{x}+6}\)

\(=\dfrac{\left(\sqrt{x}+2\right)^2-\left(\sqrt{x}-2\right)^2+4x}{x-4}.\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+4\sqrt{x}+4-x+4\sqrt{x}-4+4x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{4x+8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)

\(b,x=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{4}}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\\ =\left|\sqrt{5}+2\right|-\left|\sqrt{5}-2\right|\\ =\sqrt{5}+2-\sqrt{5}+2\\ =4\)

Khi \(x=4\Rightarrow P=\dfrac{4\sqrt{4}}{\sqrt{4}+3}=\dfrac{4.2}{2+3}=\dfrac{8}{5}\)

\(c,P=2\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+3}=2\Leftrightarrow\dfrac{4\sqrt{x}-2\left(\sqrt{x}+3\right)}{\sqrt{x}+3}=0\Leftrightarrow2\sqrt{x}-6=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

Bình luận (0)
H24
Xem chi tiết
KK
19 tháng 7 2019 lúc 20:53

Biểu thức A chị tính A2 rồi sẽ tính đc A

Bình luận (0)
KK
19 tháng 7 2019 lúc 21:03

Biểu thức B ko bt có sai đề ở căn thứ 2 ko ạ

Nếu nhân B với căn 2 thì cái căn thức nhất tách đc thành hđt (a+b)2 đấy ạ nhưng cái căn thứ 2 thì ko tách đc

Bình luận (0)
H24
19 tháng 7 2019 lúc 21:37

đề câu B chả sai đi chỗ nào :)) tại tụi m tách sai thôi =)) 

\(B=\sqrt{29+6\sqrt{6}}-\sqrt{32-6\sqrt{15}}\)

\(B=\sqrt{\left(3\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(3\sqrt{3}-\sqrt{5}\right)^2}\) ( tách ra hằng đẳng thức ) 

\(B=3\sqrt{3}+\sqrt{2}-3\sqrt{3}+\sqrt{5}\)

\(B=\sqrt{2}+\sqrt{5}\)

nuột không :)) 

Bình luận (0)
AS
Xem chi tiết
AH
20 tháng 7 2020 lúc 11:35

1.

$\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{3+1+2\sqrt{3}}-\sqrt{3+1-2\sqrt{3}}$

$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{(\sqrt{3}-1)^2}$

$=|\sqrt{3}+1|-|\sqrt{3}-1|=2$

2.

\(\sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}=\sqrt{12+6\sqrt{3}+\sqrt{9+3-2\sqrt{9.3}}}=\sqrt{12+6\sqrt{3}+\sqrt{(3-\sqrt{3})^2}}\)

\(=\sqrt{12+6\sqrt{3}+3-\sqrt{3}}=\sqrt{15+5\sqrt{3}}\)

Bình luận (0)
AH
20 tháng 7 2020 lúc 11:39

3.

\(\sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}=\sqrt{9-4\sqrt{2}+\sqrt{8+1+2\sqrt{8.1}}}\)

\(=\sqrt{9-4\sqrt{2}+\sqrt{2\sqrt{2}+1)^2}}=\sqrt{9-4\sqrt{2}+2\sqrt{2}+1}=\sqrt{10-2\sqrt{2}}\)

4.

\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8+1-2\sqrt{8.1}}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{(\sqrt{8}-1)^2}}}\) \(=\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{8}-1}}=\sqrt{\sqrt{2}+2+\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{\sqrt{2}+2+\sqrt{(2+1+2\sqrt{2}}}=\sqrt{\sqrt{2}+2+\sqrt{(\sqrt{2}+1)^2}}=\sqrt{\sqrt{2}+2+\sqrt{2}+1}\)

\(=\sqrt{3+2\sqrt{2}}=\sqrt{(\sqrt{2}+1)^2}=\sqrt{2}+1\)

Bình luận (0)
AH
20 tháng 7 2020 lúc 11:44

5.

\(\sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}=\sqrt{6+2\sqrt{5}-\sqrt{20+9+2\sqrt{20.9}}}\)

\(=\sqrt{6+2\sqrt{5}-\sqrt{(\sqrt{20}+3)^2}}=\sqrt{6+2\sqrt{5}-(\sqrt{20}+3)}=\sqrt{3}\)

6.

\(\sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\)

\(=\sqrt{8+2\sqrt{2}+2\sqrt{5}+2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{(2+5+2\sqrt{2.5})+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{2+5+2\sqrt{2.5}}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5})^2+2(\sqrt{2}+\sqrt{5})+1}-\sqrt{(\sqrt{2}+\sqrt{5})^2}\)

\(=\sqrt{(\sqrt{2}+\sqrt{5}+1)^2}-\sqrt{(\sqrt{2}+\sqrt{5})^2}=|\sqrt{2}+\sqrt{5}+1|-|\sqrt{2}+\sqrt{5}|=1\)

Bình luận (0)
NT
Xem chi tiết
DH
6 tháng 6 2018 lúc 10:03

Cần lắm hông

Bình luận (0)
AN
6 tháng 6 2018 lúc 9:57

a/ \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=1\)

b,c tương tự

Bình luận (0)
BG
Xem chi tiết
NT
12 tháng 7 2021 lúc 20:38

a) Ta có: \(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)

\(=\sqrt{2}-1-3-\sqrt{2}\)

=-4

b) Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)

\(=\sqrt{3}-1-2+\sqrt{3}+4+\sqrt{3}\)

\(=3\sqrt{3}+1\)

c) Ta có: \(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{5}-1+\sqrt{5}-2-3+\sqrt{5}\)

\(=3\sqrt{5}-6\)

d) Ta có: \(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2\right)^6}\)

\(=\sqrt{7}-2+4-\sqrt{7}+8\)

=10

Bình luận (0)