\(\dfrac{-\sqrt{x}-7}{2\sqrt{x}}\) có phải là số nguyên ko, nếu có, mấy bạn giúp mìn với ạ
giúp em bài này với ạ. có thể làm chi tiết nhất được ko ạ
em cảm ơn nhiều ạ
cho B=\(\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\) tìm ĐKXĐ
tính B với x=3
tìm x để \(\left|B\right|\) =\(\dfrac{1}{2}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
b) Ta có: \(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-1}{\sqrt{x}+1}\)
Thay x=3 vào B, ta được:
\(B=\dfrac{-1}{\sqrt{3}+1}=\dfrac{-\sqrt{3}+1}{2}\)
có thể giúp mình giải bài này với đc k ạ mình đang cần gấp (xin cảm ơn)
Bài 1:
a,\(3x-7\sqrt{x}+4=0\)
b, \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-4}=\dfrac{6-\sqrt{x}}{7-\sqrt{x}}\)
d, \(\sqrt{x-3}-\dfrac{5}{3}\sqrt{9x-27}+\dfrac{3}{2}\sqrt{4x-12}=-1\)
Bài 2:
a, \(\sqrt{x^2+6x+9}=3x-6\)
b, \(\sqrt{3x^2}=x+2\)
c, \(\sqrt{x^2-4x+4}-2x+5=0\)
d, \(x^2-2\sqrt{7x}+7=0\)
Bài 3:
a, \(\sqrt{3+x}+\sqrt{6-x}=3\)
b, \(\sqrt{3+x}-\sqrt{2-x}=1\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
Bài 1
a, `3x-7\sqrt{x}+4=0` ĐKXĐ : `x>=0`
`<=>3x-3\sqrt{x}-4\sqrt{x}+4=0`
`<=>3\sqrt{x}(\sqrt{x}-1)-4(\sqrt{x}-1)=0`
`<=>(3\sqrt{x}-4)(\sqrt{x}-1)=0`
TH1 :
`3\sqrt{x}-4=0`
`<=>\sqrt{x}=4/3`
`<=>x=16/9` ( tm )
TH2
`\sqrt{x}-1=0`
`<=>\sqrt{x}=1` (tm)
Vậy `S={16/9;1}`
b, `1/2\sqrt{x-1}-9/2\sqrt{x-1}+3\sqrt{x-1}=-17` ĐKXĐ : `x>=1`
`<=>(1/2-9/2+3)\sqrt{x-1}=-17`
`<=>-\sqrt{x-1}=-17`
`<=>\sqrt{x-1}=17`
`<=>x-1=289`
`<=>x=290` ( tm )
Vậy `S={290}`
Bài 1:
a) Ta có: \(3x-7\sqrt{x}+4=0\)
\(\Leftrightarrow3x-3\sqrt{x}-4\sqrt{x}+4=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}\cdot\left(-1\right)=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
Bài 8:
\(M=1+\frac{4}{\sqrt{x}+1}\)
Để $M$ nguyên thì $\frac{4}{\sqrt{x}+1}$ nguyên
Đặt $\frac{4}{\sqrt{x}+1}=t$ với $t$ là số nguyên dương
$\Rightarrow \sqrt{x}+1=\frac{4}{t}$
$\sqrt{x}=\frac{4}{t}-1=\frac{4-t}{t}\geq 0$
$\Rightarrow 4-t\geq 0\Rightarrow t\leq 4$
Mà $t$ nguyên dương suy ra $t=1;2;3;4$
Kéo theo $x=9; 1; \frac{1}{9}; 0$
Kết hợp đkxđ nên $x=0; \frac{1}{9};9$
Bài 9:
$P=1+\frac{5}{\sqrt{x}+2}$
Để $P$ nguyên thì $\frac{5}{\sqrt{x}+2}$ nguyên
Đặt $\frac{5}{\sqrt{x}+2}=t$ với $t\in\mathbb{Z}^+$
$\Leftrightarrow \sqrt{x}+2=\frac{5}{t}$
$\Leftrightarrow \sqrt{x}=\frac{5-2t}{t}\geq 0$
Với $t>0\Rightarrow 5-2t\geq 0$
$\Leftrightarrow t\leq \frac{5}{2}$
Vì $t$ nguyên dương suy ra $t=1;2$
$\Rightarrow x=9; \frac{1}{4}$ (thỏa đkxđ)
Bài 8:
Để M nguyên thì \(\sqrt{x}+5⋮\sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)
hay \(x\in\left\{0;1;9\right\}\)
Giải phương trình: \(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3x+3.\)
Mk muốn hỏi các bạn là phương trình này vô nghiệm có phải ko và nếu ko phải thì các bạn giải giúp mk nhé!
Giúp mk với, mk cần gấp trong ngày mai!
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
A=\(\dfrac{7\sqrt{x}-2}{2\sqrt{x}+1}\)
Tìm x để A nhận giá trị là một số nguyên dương
MN ƠI HELP MÌNH VỚI. MÌNH CẢM ƠN Ạ
A=\(\dfrac{7\sqrt{x}-2}{2\sqrt{x}+1}\)
Tìm x để A nhận giá trị là một số nguyên dương
MN ƠI HELP MÌNH VỚI. MÌNH CẢM ƠN Ạ
Đk:x \(\ge0\)
+) x không là số chính phương
=> \(\sqrt{x}\) là số vô tỉ (loại)
+) x là số chính phương
\(A=3+\dfrac{\sqrt{x}-5}{2\sqrt{x}+1}\)
Để A nhận giá trị nguyên dương
\(\Rightarrow\left(\sqrt{x}-5\right)⋮\left(2\sqrt{x}+1\right)\)
\(\Leftrightarrow\left(2\sqrt{x}-10\right)⋮\left(2\sqrt{x}+1\right)\)
\(\Leftrightarrow-11⋮\left(2\sqrt{x}+1\right)\)
\(\Rightarrow\left(2\sqrt{x}+1\right)\inƯ\left(11\right)=\left\{1;11\right\}\left(2\sqrt{x}+1>0\right)\)
\(2\sqrt{x}+1\) | 1 | 11 |
\(\sqrt{x}\) | 0 | 5 |
\(x\) | 0 | 25 |
Thay vào => x=25
\(\dfrac{\sqrt{x}+5}{2\left(\sqrt{x}-3\right)}< 0\)
Các bạn có thể giúp minh ko
\(\dfrac{\sqrt{x}+5}{2\left(\sqrt{x}-3\right)}< 0\left(ĐK:x\ge0\right)\)
<=> \(\dfrac{\sqrt{x}+5}{2\left(\sqrt{x}-3\right)}< \dfrac{0}{2\left(\sqrt{x}-3\right)}\)
<=> \(\sqrt{x}+5< 0\)
<=> \(\sqrt{x}< -5\)
<=> \(x< 25;\left(x\ge0\right)\)
<=> \(0\le x< 25\)
\(ĐK:x\ge0;x\ne9\\ BPT\Leftrightarrow2\left(\sqrt{x}-3\right)< 0\left(\sqrt{x}+5\ge5>0\right)\\ \Leftrightarrow\sqrt{x}-3< 0\left(2>0\right)\\ \Leftrightarrow x< 9\\ \Leftrightarrow0\le x< 9\)
Số giá trị nguyên của x để biểu thức \(\dfrac{2\sqrt{x}-7}{\sqrt{x}-1}\) có giá trị nguyên là?