1/2×2/3×3/4••••2023/2024
CMR1×2-1/2!+2×3-1/2!+3×4-1/4!+...+2023×2024/2024!<2
TH1
42:x=6
x= 42 :6
X= 7
TH 2
36:x = 6
X = 36: 6
X= 6
cho a =1/3 - 2/3*2 + 3/3*3 - 4/3*4 + 5/3*5 - ...... + 2023/3*2023 - 2024/3*2024 hãy so sánh a với 20/3
A = \(\dfrac{1}{3}\)-\(\dfrac{2}{^{ }3^2}\)+\(\dfrac{3}{3^3}\)-\(\dfrac{4}{3^4}\)+...+\(\dfrac{2023}{3^{2023}}\)-\(\dfrac{2024}{3^{2024}}\) so sánh A với \(\dfrac{3}{16}\)
1+2+3+4 +...+2023
20+21+22+...+2024
2+4+6+...+2024
1+2+4+8+16+....+ 8192
Đặt A = 1 + 2 + 3 + 4 + ... + 2023
Tổng có 2023 - 1 + 1 số hạng
A = (2023 + 1) × 2023 : 2
= 2047276
-----------------------
Đặt B = 20 + 21 + 22 + ... + 2024
Tổng có: 2024 - 20 + 1 = 2005 số hạng
B = (2024 + 20) × 2005 : 2
= 2049110
------------------------
Đặt C = 2 + 4 + 6 + ... + 2024
Tổng có (2024 - 2) : 2 + 1 = 1012 số hạng
C = (2024 + 2) × 1012 : 2
= 1025156
------------------------
Đặt D = 1 + 2 + 4 + 8 + 16 + ... + 8192
2 × D = 2 + 4 + 8 + 16 + 32 + ... + 16384
2 × D - D = (2 + 4 + 8 + 16 + 32 + ... + 16384) - (1 + 2 + 4 + 8 + 16 + ... + 8192)
= 16384 - 1
= 16383
Vậy D = 16383
\(a,A=1+2+3+4+5..+2023\)
Số số hạng:
\(\left(2023-1\right):1+1=2023\)
Tổng :
\(\dfrac{\left(2023+1\right).2023}{2}=2047276\)
\(b,20+21+22+..+2024\)
Số số hạng:
\(\left(2024-20\right):1+1=2005\)
Tổng:
\(\dfrac{\left(2024+20\right).2005}{2}=2049110\)
\(c,2+4+6+..+2024\)
Số số hạng:
\(\left(2024-2\right):2+1=1012\)
Tổng:
\(\dfrac{\left(2024+2\right).1012}{2}=1025156\)
1+2+3+4 +...+2023
Số phần tử là :
( 2023 -1 ) : 1 + 1 = 2023 ( phần tử )
Tổng các số là :
( 2023 + 1 ) x 2023 : 2 = 2047276
20+21+22+...+2024
Số phần tử là :
( 2024 - 20 ) : 1 + 1 = 2005 ( phần tử )
Tổng các số là :
( 2024 + 20 ) x 2005 : 2 = 2049110
2+4+6+...+2024
Số phần tử là :
( 2024 - 2 ) : 2 + 1 = 1012 ( phần tử )
Tổng các số là :
( 2024 + 2 ) x 1012 : 2 = 1025156
1+2+4+8+16+....+ 8192
A = 2^0 + 2^1 + 2^2 + 2^3 +....+2^13
2A = 2^1 + 2^2 + 2^3 + 2^4 +..... + 2^14
2A - A = 2^14 - 2^0
=> A = 2^14 -1
S=1-3+5-7+9-11+....+2023-2025
S=1+2-3-4+5+6-7-8+....+2021+2022-2023-2024
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
1/2 +1/3+1/4+...+ 1/2023+ 1/2024
1-2+3-4+5-6+7-8+...+2023-2024
1-2+3-4+5-6+7-8+...+2023-2024
=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)
=−1+(−1)+(−1)+(−1)+...+(−1)=−1+(−1)+(−1)+(−1)+...+(−1)
=−1.1012=−1.1012
=−1012=−1012
1-2+3-4+5-6+ ... +2023-2024
= (-1) + (-1) + ... + (-1) (1012 số)
= (-1).1012
= -1012
S=1-2+3-4+5-6+7-8+....+2023-2024
Biểu thức S có: (2024-1):1+1=2024(số hạng)
Nhóm 2 số lại 1 nhóm, ta có : 2021:2=1012(nhóm)
⇒ S=(1-2)+(3-4)+(5-6)+......+(2023-2024)
⇒ S=(-1)+(-1)+(-1)+.......+(-1) (1012 thừa số -1)
⇒ S= -1. 1012
⇒ S=-1012
Vậy S là -1012
HỌC TỐT
\(\dfrac{2^{2023}+3^{2023}}{2^{2024}+3^{2024}}\) chứng minh phấn số đó tối giản
P=1-2-3+4+5-6-7+8+.........+2023-2024
⇒2A>1√1+√2+1√2+√3+1√3+√4+1√4+√5+...+1√2024+√2025⇒2A>11+2+12+3+13+4+14+5+...+12024+2025
⇒2A>√2−√1+√3−√2+√4−√3+...+√2025−√2024⇒2A>2−1+3−2+4−3+...+2025−2024
⇒2A>√2025−√1=44⇒2A>2025−1=44
⇒A>22⇒A>22