Những câu hỏi liên quan
HN
Xem chi tiết
TK
22 tháng 7 2023 lúc 9:39

a, chứng tỏ A chia hết cho 40

Bình luận (0)
NT
22 tháng 7 2023 lúc 10:33

a: A=3(1+3+3^2+3^3)+...+3^129(1+3+3^2+3^3)

=40(3+...+3^129) chia hết cho 40

b: A=(3+3^2+3^3)+....+3^129(3+3^2+3^3)

=39(1+...+3^129) chia hết cho 39

c: A chia hết cho 40

A chia hết cho 3

=>A chia hết cho BCNN(40;3)=120

Bình luận (0)
TH
Xem chi tiết
HN
23 tháng 10 2015 lúc 10:50

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

Bình luận (0)
CT
4 tháng 8 2021 lúc 8:54
Fikj Hrtui
Bình luận (0)
 Khách vãng lai đã xóa
TR
Xem chi tiết
DA
Xem chi tiết
KL
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

Bình luận (0)
LP
Xem chi tiết
ML
Xem chi tiết
NT
18 tháng 6 2023 lúc 22:41

a: 6x^2-7x-3=0

=>6x^2-9x+2x-3=0

=>(2x-3)(3x+1)=0

=>x=-1/3 hoặc x=3/2

=>ĐPCM

b: 2x^2-5x-3=0

=>2x^2-6x+x-3=0

=>(x-3)(2x+1)=0

=>x=-1/2 hoặc x=3

=>ĐPCM

Bình luận (0)
HL
Xem chi tiết
DV
14 tháng 7 2015 lúc 10:12

A=3+32+33+34+...+3100

\(\Rightarrow3A=3^2+3^3+3^5+...+3^{101}\)

\(\Rightarrow3A-A=2A=3^{101}-3\)

\(\Rightarrow A=\left(3^{101}-3\right):2\)

\(\Rightarrow A=\left(3^{4.25}.3^1-3\right):2\)

\(\Rightarrow A=\left[\left(...1\right).3-3\right]:2\)

\(A=\left[\left(...3\right)-3\right]:2\)

\(A=\left(...0\right):2=...5\)cũng có thể là số chính phương chứ ? 

Bình luận (0)
NT
Xem chi tiết
BT
29 tháng 10 2015 lúc 20:43

+A= 1+2+2^2 +...+2^196

A= (1+2)+(2^2 +2^3) +...+(2^195 +2^196)

A= 1.3+2^2 .3+...+2^195 .3

A= 3(1+...+2^195)=> A chia hết cho 3    

A=1+2+2^2+...+2^195+2^196 

A= (1+2+2^2)+...+(2^194 +2^195 +2^196)

A= 1.7 +...+2^194 .7

A=7(1+...+2^194)=> A chia hết cho 7

+ta có : 3^1993 luôn luôn lẻ ;2^157 luôn luôn chan

=> 3^1993 - 2^157 là 1 số lẻ 

=> ko chia hết cho 2

Bình luận (0)
NT
Xem chi tiết
NT
31 tháng 10 2015 lúc 20:47

a) A = 20 + 21 + 22 + ... + 299

2A = 21 + 22 + 23 + ... + 2100

2A - A = (21 + 22 + 23 + ... + 2100) - (1 + 2 + 22 + ... + 299)

A = 2100 - 1

A + 1 = 2100 - 1 + 1 = 2100 = (250)2

\(\Rightarrow\) A là số chính phương

b) B = 3 + 32 + 33 + ... + 399

3B = 32 + 33 + 34 + ... + 3100

3B - B = (32 + 33 + 34 + ... + 3100) - (3 + 32 + 33 + ... + 399)

2B = 3100 - 3

2B + 3 = 3100 - 3 + 3 = 3100 = (350)2

\(\Rightarrow\) B là số chính phương

Bình luận (0)
TL
Xem chi tiết
NA
14 tháng 10 2019 lúc 20:42

1. Chứng tỏ rằng: ab + ba chia hết cho 11:

Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b) 

Vì \(11\left(a+b\right)⋮11\)

\(\Rightarrow ab+ba⋮11\)

Chứng tỏ rằng: ab - ba chia hết cho 9

Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)

vì \(9\left(a-b\right)⋮9\)

\(\Rightarrow ab-ba⋮9\)

Bình luận (0)
XO
14 tháng 10 2019 lúc 20:47

1. a) Ta có : ab + ba =  (a0 + b) + (b0 + a)

                                = (10a + b) + (10b + a)

                                = 10a + b + 10b + a

                                = (10a + a) + (b + 10b)

                                = 11a + 11b

                                = 11(a + b) \(⋮\)11

=> ab + ba  \(⋮\)11 (ĐPCM)

b) Ta có : ab - ba = (a0 + b) - (b0 + a) 

                            = (10a + b) - (10b + a) 

                            = 10a + b - 10b - a

                            = (10a - a) - (10b - b)

                            = 9a - 9b

                            = 9(a - b) \(⋮\)9

=>  ab + ba  \(⋮\)9 (ĐPCM)

2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) \(⋮\)3 (ĐPCM)

3) 

Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2

Khi đó a + a + 1 + a + 2

   = 3a + 3

   = 3(a + 1) 

=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)

Bình luận (0)

1.  Ta có: ab + ba = 10a +b + 10b +a= 11a + 11b

                             = 11 ( a + b) \(⋮11\)

Ta có: ab - ba = 10a +b - (10b + a) = 10a +b -10b -a

                     = 9a - 9b = 9 (a-b) \(⋮9\)

2. Gọi 3 số tự nhiên liên tiếp là x; x+1; x+2

Ta có: x + x+1 +x +2= (x + x+x) + (1 +2)

                               = 3x + 3 = 3 ( x+1) \(⋮3\)

Bình luận (0)