Những câu hỏi liên quan
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 15:46

\(\tan x = \frac{{\sin x}}{{\cos x}}\)

Bình luận (0)
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 21:17

a) A là tập hợp các số tự nhiên nhỏ hơn 5, khi đó \(0 \in A,2 \in A,3 \in A.\)

B là tập hợp các nghiệm thực của phương trình \({x^2} - 3x + 2 = 0\), khi đó \(1 \in B,2 \in B.\)

C là tập hợp các thứ trong tuần, khi đó chủ nhật \( \in C,\) thứ năm \( \in C.\)

b)

\(\begin{array}{l}0 \in \mathbb{N},\;2 \in \mathbb{N}, - 5 \notin \mathbb{N},\;\frac{2}{3} \notin \mathbb{N}.\\0 \in \mathbb{Z},\; - 5 \in \mathbb{Z},\frac{2}{3} \notin \mathbb{Z},\sqrt 2 \; \notin \mathbb{Z}.\\0 \in \mathbb{Q},\;\frac{2}{3} \in \mathbb{Q},\sqrt 2  \notin \mathbb{Q},\;\pi  \notin \mathbb{Q}.\\\frac{2}{3} \in \mathbb{R},\;\sqrt 2  \in \mathbb{R},e \notin \mathbb{R},\;\pi  \notin \mathbb{R}.\end{array}\)

Bình luận (0)
NH
Xem chi tiết
NL
29 tháng 5 2019 lúc 19:25

Để hàm số xác định \(\forall x\in R\Leftrightarrow sin^4x+cos^4x-2msinx.cosx\ge0\) \(\forall x\)

Ta có:

\(sin^4x+cos^4x-2msinx.cosx=\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2-m.sin2x\)

\(=1-2\left(\frac{1}{2}sin2x\right)^2-msin2x=-\frac{1}{2}sin^22x-msin2x+1\)

Xét \(f\left(t\right)=-\frac{1}{2}t^2-mt+1\) với \(t\in\left[-1;1\right]\)

\(f\left(-1\right)=\frac{1}{2}+m\) ; \(f\left(1\right)=\frac{1}{2}-m\)

Để \(f\left(t\right)\ge0\) \(\forall t\in\left[-1;1\right]\Rightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\f\left(1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge-\frac{1}{2}\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)

Bình luận (1)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 15:48

\(\cot x = \frac{{\cos x}}{{\sin x}}\)

Bình luận (0)
MP
21 tháng 9 2023 lúc 18:34

\(\cot x=\dfrac{\cos x}{\sin x}\)

Bình luận (0)
QL
Xem chi tiết
HM
21 tháng 9 2023 lúc 23:15

Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)

Vậy ta chọn đáp án B

Bình luận (0)
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:17

a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta  = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)

Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta  < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)

Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)

b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta  = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)

Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta  = 25 + 12m \le 0 \Leftrightarrow m \le  - \frac{{25}}{{12}}\)

Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le  - \frac{{25}}{{12}}\)

Bình luận (0)
NH
Xem chi tiết
H24
29 tháng 11 2019 lúc 21:23

var i,n:integer;

x,y,A:real;

begin

write('Nhap gia tri cho x va n');

readln(x,n);

A:=0;

y:=1;

for i:=1 to n do

begin

y:=y*sin(x);

A:= A + y;

end;

write('Tong A la: ',A:8:4);

readln

end.

Bình luận (0)
 Khách vãng lai đã xóa
QL
Xem chi tiết
HM
22 tháng 9 2023 lúc 21:21

a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)

b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)

Bình luận (0)
TA
Xem chi tiết
NL
24 tháng 10 2019 lúc 23:28

\(A=sin^230+sin^260+sin^240+sin^250\)

\(=sin^230+cos^2\left(90-60\right)+sin^240+cos^2\left(90-50\right)\)

\(=sin^230+cos^230+sin^240+cos^240\)

\(=1+1=2\)

\(B=\frac{sinx+cosx}{sinx-cosx}=\frac{\frac{sinx}{sinx}+\frac{cosx}{sinx}}{\frac{sinx}{sinx}-\frac{cosx}{sinx}}=\frac{1+cotx}{1-cotx}=\frac{1+2}{1-2}=-3\)

Bình luận (0)
 Khách vãng lai đã xóa