Những câu hỏi liên quan
WR
Xem chi tiết
LH
6 tháng 8 2016 lúc 16:00

Vì tam giác ABC vuông tại A nên:

\(AB^2+AC^2=BC^2\)

=> \(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)

=>\(\frac{4}{9}AC^2+AC^2=144\)

=>\(AC^2\left(\frac{4}{9}+1\right)=144\)

=>\(AC^2.\frac{13}{9}=144\)

=>\(AC^2=144:\frac{13}{9}=\frac{1296}{13}\)

=> \(AC=\frac{36\sqrt{13}}{13}\)

=> \(AB=AC.\frac{2}{3}=\frac{36\sqrt{13}}{13}.\frac{2}{3}=\frac{24\sqrt{13}}{13}\)

Vậy 2 cạnh góc vuông của tam giác ABC là \(\frac{24\sqrt{13}}{13}\)\(\frac{36\sqrt{13}}{13}\)

Bình luận (0)
CP
Xem chi tiết
NT
23 tháng 8 2021 lúc 14:45

Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{13}{9}=144\)

\(\Leftrightarrow AC^2=\dfrac{1296}{13}\)

\(\Leftrightarrow AC=\dfrac{36\sqrt{13}}{13}cm\)

\(\Leftrightarrow AB=\dfrac{24\sqrt{13}}{13}cm\)

Bình luận (0)
CP
Xem chi tiết
TC
24 tháng 8 2021 lúc 9:13

Hình vẽ chỉ mang tính chất minh họa, bạn tham khảo nhé.

undefined

Bình luận (0)
NT
Xem chi tiết
VV
6 tháng 8 2017 lúc 13:51

Do tam giác ABC vuông tại A nên ta có biểu thức: \(AB^2+AC^2=BC^2\)
Thay các dữ kiện \(BC=12cm\) ; \(AB=\frac{2}{3}AC\) vào biểu thức trên ta được:
\(\left(\frac{2}{3}AC\right)^2+AC^2=12^2\)
\(\Rightarrow\frac{4}{9}AC^2+AC^2=144\)
\(\Rightarrow\frac{13}{9}AC^2=144\)
\(\Rightarrow AC^2=\frac{1296}{13}\)
Do AC là một cạnh tam giác nên \(AC>0\)\(\Rightarrow AC=\frac{36}{\sqrt{13}}cm\)
Khi đó:
\(AB=\frac{2}{3}AC\)
\(\Rightarrow AB=\frac{2}{3}\cdot\frac{36}{\sqrt{13}}\)
\(\Rightarrow AB=2\cdot\frac{12}{\sqrt{13}}\)
\(\Rightarrow AB=\frac{24}{\sqrt{13}}cm\)

Bình luận (0)
HH
Xem chi tiết
NH
Xem chi tiết
NH
15 tháng 8 2016 lúc 16:17

Hỏi đáp Toán

Bình luận (0)
HN
15 tháng 8 2016 lúc 16:17

Đặt AC = x (x > 0) => AC = 2/3x

Áp dụng đ/l Pytago , ta có : \(AB^2+AC^2=BC^2\Leftrightarrow x^2+\left(\frac{2x}{3}\right)^2=12^2\Leftrightarrow\frac{13}{9}x^2=144\Leftrightarrow x^2=\frac{1296}{13}\Leftrightarrow x=\frac{36\sqrt{13}}{13}\)(vì x > 0)

Suy ra \(AC=\frac{36\sqrt{13}}{13};AB=\frac{24\sqrt{13}}{13}\)

 

Bình luận (0)
LT
Xem chi tiết
NK
5 tháng 6 2017 lúc 7:44

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

Bình luận (0)
NN
9 tháng 7 2019 lúc 18:35

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
2N
Xem chi tiết
MT
Xem chi tiết
NT
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Bình luận (0)