Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
CMR
-(-4a+5c-3b)-(2b-a+7c)+(-7b+3c-5a)=-9c-6b
-(2a-3c+b)+(-5b-4c+12a)-(-9b-4c+4a)+(-6a-3b-3c)+d=d
phá ngoặc lun nà
+4a-5c+3b-2b+a-7c-7b+3c-5a=(4a+a-5a)+(3b-2b-7b)+(-5c-7c+3c)=0-6b-9c=-9c-6b
-2a+3c-b-5b-4c+12a+9b+4c-4a-6a-3b-3c+d=(-2a+12a-4a-6a)+(-b-5b+9b-3b)+(3c-4c+4c-3c)+d=0+0+0+0+d=d
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
bài 1
cho :\(\frac{4a-3b}{5}=\frac{5b-4c}{3}=\frac{3c-5a}{5}\)
CMR :\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
bài 2: tìm các số ng x, y bt rằng :
b)\(2^x-2^y=\) 256 (x, y là số ng dương)
ko biết
ai trả lời giùm mình,mình k cho
Hạnh ơi đề sai cô Tâm cho sửa lại rồi
cho : \(\frac{4a-3b}{5}=\frac{5b-4c}{3}=\frac{3c-5a}{4}\)
cho tỷ lệ thức a/b=c/d. chứng minh:
a, 2a+5b/3a-4b=2c+5d/3c-4d
b. 3a+7b/5a-7b=3c+7d/5c-7d
d. 4a+9b/4a-7b=4c+9d/4c-7d
giúp mình với ạ
bài 1
cho :\(\dfrac{4a-3b}{5}=\dfrac{5b-4c}{3}=\dfrac{3c-5a}{5}\)
CMR :\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
bài 2: tìm các số ng x, y bt rằng :
a)\(\dfrac{4}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
b)\(2^x-2^y=256\)(x, y nguyên dương)
\(\dfrac{4}{x}-\dfrac{y}{3}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}-\dfrac{2y}{6}=\dfrac{1}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1}{6}+\dfrac{2y}{6}\)
\(\Rightarrow\dfrac{4}{x}=\dfrac{1+2y}{6}\)
\(\Rightarrow24=x\left(1+2y\right)\)
\(\Rightarrow x;1+2y\inƯ\left(24\right)\)
\(Ư\left(24\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm8;\pm12;\pm24\right\}\)
Mà 1+2y lẻ nên:
\(\left\{{}\begin{matrix}1+2y=1\Rightarrow2y=0\Rightarrow y=0\\x=24\\1+2y=-1\Rightarrow2y=-2\Rightarrow y=-1\\x=-24\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1+2y=3\Rightarrow2y=2\Rightarrow y=1\\x=8\\1+2y=-3\Rightarrow2y=-4\Rightarrow y=-2\\x=-8\end{matrix}\right.\)
Cho các số thực dương a,b,c. Chứng minh rằng :
\(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\)< \(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\)
Ta có: BĐT phụ sau: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)( CM bằng BĐT Shwars nha).Áp dụng ta có:
\(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5a}+\frac{1}{3a+2b+4c}\ge\frac{9}{9a+6b+12c}=\frac{3}{3a+2b+4c}\left(1\right)\)
\(\frac{1}{b+3c+5a}+\frac{1}{c+3a+5b}+\frac{1}{3b+2c+4a}\ge\frac{9}{9b+6c+12a}=\frac{3}{3b+2c+4a}\left(2\right)\)
\(\frac{1}{c+3a+5b}+\frac{1}{a+3b+5c}+\frac{1}{3c+2a+4b}\ge\frac{9}{9c+6a+12b}=\frac{3}{3c+2a+4b}\left(3\right)\)
Cộng (1),(2) và (3) có:
\(2\left(\frac{1}{a+3b+5c}+\frac{1}{b+3c+5c}+\frac{1}{c+3a+5b}\right)+\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\ge3\left(\frac{1}{3a+2b+4c}+\frac{1}{3b+2c+4a}+\frac{1}{3c+2a+4b}\right)\)
\(\Rightarrow2VP\ge2VT\)
\(\RightarrowĐPCM\)
BÀI 1: 1D - 2A - 3C - 4D - 5B - 6C - 7A
BÀI 2: 1B- 2A- 3B - 4B - 5D - 6C - 7A
BÀI 3; 1D - 2C - 3D- 4C - 5B - 6D - 7D - 8D - 9A - 10A - 11D - 12A
BÀI 4: 1D - 2A - 3C - 4A - 5B - 6D - 7A - 8B - 9B - 10A
BÀI 5: 1A - 2D - 3D - 4C - 5B - 6D - 7A
Mọi người giúp mình bài này với
Bài 1 : (a+b)^2 = 2(a+b)^2. Chứng minh rằng a= b
Bài 2: Cho a^2 - b^2= 4c^2. Chứng minh rằng (5a-3b+8c) (5a-3b-8c) = (3a-5b)
Bài 3 : Cho x +y = 1. Tính giá trị của x^3 +y^3+ 3xy
Bài 4: Cho x-y = 1. Tính giá trị của x^3-y^3- 3xy