Những câu hỏi liên quan
DA
Xem chi tiết
NN
25 tháng 11 2021 lúc 15:43

là có nha 

HT

Bình luận (0)
 Khách vãng lai đã xóa
DA
Xem chi tiết
NT
Xem chi tiết
DC
Xem chi tiết
H24
25 tháng 12 2021 lúc 20:59

\(B=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow2B=2^2+2^3+2^4+...+2^{101}\)

\(\Rightarrow2B-B=2^2+2^3+2^4+...+2^{101}-2-2^2-2^3-...-2^{100}\)

\(\Rightarrow2B-B=2^{101}-2\)

 

Bình luận (1)
MA
25 tháng 12 2021 lúc 20:59

bài 1

2101 - 2

Bình luận (3)
H24
25 tháng 12 2021 lúc 21:01

\(A=1+3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)

\(\Rightarrow A=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=\left(1+3+3^2+3^3\right)\left(1+3^4+...+9^{96}\right)\)

\(\Rightarrow A=40\left(1+3^4+...+9^{96}\right)⋮40\)

Bình luận (1)
DA
Xem chi tiết
NT
28 tháng 11 2021 lúc 9:45

Books have been one of my best friends which have supported me in every step of my life. And the one that I have the deepest impression on is “The miracle of the Namiya general store” .

The book is about three delinquents who were running away from their wrongdoings then accidentally found an old house and hid there for the night. The house turned out to be an abandoned general store where people could seek advice for their troubles by leaving a letter in the mailbox. Miracle happened when the time line somehow switched and letters from 30 years ago were delivered to them. Although none of them ever seriously considered others’ problems, something from the inside urged them to write responses to the troubled people, on behalf of Namiya – the old owner.

“ Miraculous” is exactly how I want to describe this book. No need for dogma lessons, it presents the value of kindness and compassion through different short stories that are linked perfectly together and leaves me hopeful about human nature. The past, present and future are combined flexibly, which creates many a surprise to me. How did the letters change  people’s lives? Could the delinquents - whose past was covered by darkness – be awoken and open their hearts to heal the grieving souls? The story presents an open ending but I have got the answer of my own. To any book lovers especially those who have interest in soothing and touching stories, “The miracle of the Namiya general store” by Higashino Keigo is the one that should not be missed.
  TƯỞNG GÌ KHÓ , THAM KHẢO NHA BẠN

Bình luận (0)
 Khách vãng lai đã xóa
LV
Xem chi tiết
H24
14 tháng 9 2017 lúc 12:48

Ta có:

A = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16 + 1/17) <

(1/2 + 1/3 + 1/4 + 1/5) + 3(1/6) + 3(1/9) + 3(1/12) + 3(1/15)

= 2(1/2 + 1/3 + 1/4 + 1/5)

< 2(1/2 + 1/2 + 1/4 + 1/4) = 3

Mặt khác A = (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) + 1/17

> (1/2 + 1/3 + 1/4) + 4(1/8) + 4(1/12) + 4(1/16)

=2(1/2 + 1/3 + 1/4) > 2(1/2 + 1/4 + 1/4) = 2

=> 2 < A < 3 

=> ko la số tự nhiên

Bình luận (0)
NV
Xem chi tiết
TT
26 tháng 9 2023 lúc 21:28

M = 1 + 3 +3^2 +... +3^99

3M = 3 +3^2 + 3^3 + .... 3^100

3M - M = (3+3^2+3^3+... + 3^100)-(1+3+3^2+...+3^99)

2M = 3^100 -1

2M+1= 3^100

2M+1 = (3^50)^2

Vậy 2M +1 là số chính phương

Bình luận (0)
KL
26 tháng 9 2023 lúc 21:32

M = 1 + 3 + 3² + ... + 3⁹⁹

⇒ 3M = 3 + 3² + 3³ + ... + 3¹⁰⁰

⇒ 2M = 3M - M

= (3 + 3² + 3³ + ... + 3¹⁰⁰) - (1 + 3 + 3² + ... + 3⁹⁹)

= 3¹⁰⁰ - 1

⇒ 2M + 1 = 3¹⁰⁰ - 1 + 1 = 3¹⁰⁰

= (3⁵⁰)²

Vậy 2M + 1 là số chính phương

Bình luận (0)
NN
26 tháng 9 2023 lúc 21:32

`M=1+3+3^2+...+3^99`

`3M=3+3^2+3^3+...+3^100`

`3M-M=(3+3^2+3^3+...+3^100)-(1+3+3^2+...+3^99)`

`2M=3^100-1`

`2M+1=3^100=(3^50)^2`

`=>2M+1` là số chính phương

Bình luận (0)
NL
Xem chi tiết
NM
26 tháng 12 2022 lúc 14:04

a) A=3+32+33+34+35+36+....+328+329+330

⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

Bình luận (0)
TT
Xem chi tiết
NH
27 tháng 7 2023 lúc 11:51

A = 3 + 32 + 33 +...+ 32015

A =  (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)

A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )

A = 3.211 +...+ 32011.121

A = 121.( 3 +...+ 32021)

121 ⋮ 121 ⇒ A =  121 .( 3 +...+32021)  ⋮ 121 (đpcm)

b, A              = 3 + 32 + 33 + 34 +...+ 32015

   3A             =       32 + 33 + 34 +...+ 32015 + 32016

3A - A           =   32016 - 3

    2A            = 32016 - 3

      2A    + 3  = 32016 -  3 + 3

      2A    + 3 =  32016 = 27n

       27n = 32016

       (33)n = 32016

        33n = 32016 

           3n =  2016

             n = 2016 : 3

             n = 672

c, A = 3 + 32 + ...+ 32015

    A = 3.( 1 + 3 +...+ 32014)

    3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3

   Mặt khác ta có: A = 3 + 32 +...+ 32015 

                             A =  3 + (32 +...+ 32015)

                             A = 3 + 32.( 1 +...+ 32015)

                             A = 3 + 9.(1 +...+ 32015)

                              9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9 

                                            3 không chia hết cho 9 nên 

                                A không chia hết cho 9, mà A lại chia hết cho 3 

                        Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9

    

 

 

      

Bình luận (0)