Chứng minh tổng sau ko phải là số chính phương:
P=1+3+32+33+...+361+362
Mn giúp e nha!!! IU MN NHÌU
. Các tổng sau đây có là số chính phương không? a) T = 1 + 3 + 32 + 33 + … + 361 + 362 b) M = 5 + 52 + 53 + …+ 580 .
là có nha
HT
. Các tổng sau đây có là số chính phương không? a) T = 1 + 3 + 32 + 33 + … + 361 + 362 b) M = 5 + 52 + 53 + …+ 580 .
1. Giả sử p2 +2 đều là các số nguyên tố. Chứng minh p3+2 là số nguyên tố
2 Chứng minh 1 số có tổng các chữ số là 2018 thì số đó ko là số chính phương
Mn giúp mk vs nha
tính tổng của dãy sau :
B = 2 + 22 + 23 + 24 +...+2100
2. chúng minh rằng A= 1 + 3 + 32 +33+...+399 ⋮ 40
mn giúp mình nhanh nhất nha ^^ cảm ơn mn
\(B=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2B=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2B-B=2^2+2^3+2^4+...+2^{101}-2-2^2-2^3-...-2^{100}\)
\(\Rightarrow2B-B=2^{101}-2\)
\(A=1+3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=\left(1+3+3^2+3^3\right)\left(1+3^4+...+9^{96}\right)\)
\(\Rightarrow A=40\left(1+3^4+...+9^{96}\right)⋮40\)
4. Các tổng sau đây có là số chính phương không?
a) T = 1 + 3 + 32 + 33 + … + 361 + 362
b) M = 5 + 52 + 53 + …+ 580
Ai làm nhanh nhất đúng nhất mik sẽ tích . giải lun dùm mik
Books have been one of my best friends which have supported me in every step of my life. And the one that I have the deepest impression on is “The miracle of the Namiya general store” .
The book is about three delinquents who were running away from their wrongdoings then accidentally found an old house and hid there for the night. The house turned out to be an abandoned general store where people could seek advice for their troubles by leaving a letter in the mailbox. Miracle happened when the time line somehow switched and letters from 30 years ago were delivered to them. Although none of them ever seriously considered others’ problems, something from the inside urged them to write responses to the troubled people, on behalf of Namiya – the old owner.
“ Miraculous” is exactly how I want to describe this book. No need for dogma lessons, it presents the value of kindness and compassion through different short stories that are linked perfectly together and leaves me hopeful about human nature. The past, present and future are combined flexibly, which creates many a surprise to me. How did the letters change people’s lives? Could the delinquents - whose past was covered by darkness – be awoken and open their hearts to heal the grieving souls? The story presents an open ending but I have got the answer of my own. To any book lovers especially those who have interest in soothing and touching stories, “The miracle of the Namiya general store” by Higashino Keigo is the one that should not be missed.
TƯỞNG GÌ KHÓ , THAM KHẢO NHA BẠN
giúp mk nha mn
cảm ơn mn
chứng minh: 1/2 + 1/3 + ... + 1/16 ko phải là số tự nhiên
Ta có:
A = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16 + 1/17) <
(1/2 + 1/3 + 1/4 + 1/5) + 3(1/6) + 3(1/9) + 3(1/12) + 3(1/15)
= 2(1/2 + 1/3 + 1/4 + 1/5)
< 2(1/2 + 1/2 + 1/4 + 1/4) = 3
Mặt khác A = (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) + 1/17
> (1/2 + 1/3 + 1/4) + 4(1/8) + 4(1/12) + 4(1/16)
=2(1/2 + 1/3 + 1/4) > 2(1/2 + 1/4 + 1/4) = 2
=> 2 < A < 3
=> ko la số tự nhiên
M= 1+ 3+ 32+ ......+ 399. chứng minh 2M+ 1 là số chính phương
Giúp tôi với mn❤
M = 1 + 3 +3^2 +... +3^99
3M = 3 +3^2 + 3^3 + .... 3^100
3M - M = (3+3^2+3^3+... + 3^100)-(1+3+3^2+...+3^99)
2M = 3^100 -1
2M+1= 3^100
2M+1 = (3^50)^2
Vậy 2M +1 là số chính phương
M = 1 + 3 + 3² + ... + 3⁹⁹
⇒ 3M = 3 + 3² + 3³ + ... + 3¹⁰⁰
⇒ 2M = 3M - M
= (3 + 3² + 3³ + ... + 3¹⁰⁰) - (1 + 3 + 3² + ... + 3⁹⁹)
= 3¹⁰⁰ - 1
⇒ 2M + 1 = 3¹⁰⁰ - 1 + 1 = 3¹⁰⁰
= (3⁵⁰)²
Vậy 2M + 1 là số chính phương
`M=1+3+3^2+...+3^99`
`3M=3+3^2+3^3+...+3^100`
`3M-M=(3+3^2+3^3+...+3^100)-(1+3+3^2+...+3^99)`
`2M=3^100-1`
`2M+1=3^100=(3^50)^2`
`=>2M+1` là số chính phương
Bài 1. Cho 𝐴 = 3 + 32 + 33 + ⋯ + 330.
- Chứng minh rằng: 𝐴 ⋮ 13 và 𝐴 ⋮ 52.
- Hỏi A có phải là số chính phương không? Tại sao?
A=3+32+33+...+32015
a) CMR: A chia hết cho 121
b)tìm n biết 2A+3=27n
c) A có phải số chính phương ko??
giúp mình nha! ai làm đúng tui tick cho
A = 3 + 32 + 33 +...+ 32015
A = (3 + 32 + 33 + 34 + 35) +...+ (32011 + 32012 + 32013 + 32014 + 32015)
A = 3.( 1 + 3 + 32 + 33 + 34) +...+ 32011( 1 + 3 + 32 + 33 + 34 )
A = 3.211 +...+ 32011.121
A = 121.( 3 +...+ 32021)
121 ⋮ 121 ⇒ A = 121 .( 3 +...+32021) ⋮ 121 (đpcm)
b, A = 3 + 32 + 33 + 34 +...+ 32015
3A = 32 + 33 + 34 +...+ 32015 + 32016
3A - A = 32016 - 3
2A = 32016 - 3
2A + 3 = 32016 - 3 + 3
2A + 3 = 32016 = 27n
27n = 32016
(33)n = 32016
33n = 32016
3n = 2016
n = 2016 : 3
n = 672
c, A = 3 + 32 + ...+ 32015
A = 3.( 1 + 3 +...+ 32014)
3 ⋮ 3 ⇒ A = 3.(1 + 3 + 32 +...+ 32014) ⋮ 3
Mặt khác ta có: A = 3 + 32 +...+ 32015
A = 3 + (32 +...+ 32015)
A = 3 + 32.( 1 +...+ 32015)
A = 3 + 9.(1 +...+ 32015)
9 ⋮ 9 ⇒ 9.(1 +...+ 32015) ⋮ 9
3 không chia hết cho 9 nên
A không chia hết cho 9, mà A lại chia hết cho 3
Vậy A không phải là số chính phương vì số chính phương chia hết cho số nguyên tố thì sẽ chia hết cho bình phương số nguyên tố đó. nhưng A ⋮ 3 mà không chia hết cho 9