Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
NT
4 tháng 1 2024 lúc 19:45

a: 1-2+3-4+...+99-100

=(1-2)+(3-4)+...+(99-100)

=(-1)+(-1)+...+(-1)

=-1*50=-50

c: 1+2-3-4+....+97+98-99-100

=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)

=(-4)+(-4)+...+(-4)

=(-4)*25=-100

Bình luận (0)
GL
Xem chi tiết
NH
13 tháng 8 2023 lúc 16:09

A =  1 - 2 + 3 -  4 + 5 - 6 + 7 - 8 +....+ 99 - 100

A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)

Xét dãy số 1; 3;...; 99 

Dãy số trên là dãy số cách đều với khoảng cách là:  3 - 1 = 2

Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50

A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1

A = - 1 \(\times\) 50 = - 50 

Bình luận (0)
NH
13 tháng 8 2023 lúc 16:11

B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100 

B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)

B = 0 + 0 +...+ 0

B = 0

Bình luận (0)
LD
Xem chi tiết
H24
19 tháng 12 2022 lúc 20:04

Thao khảm:

 

Bình luận (0)
MS
Xem chi tiết
NL
8 tháng 4 2021 lúc 21:25

\(VT=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{2}{\left(a+1\right)^2}+\dfrac{2}{\left(b+1\right)^2}+\dfrac{2}{\left(c+1\right)^2}\)

Mặt khác: 

\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1.1\right)^2}\ge\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{a}{b}\right)}+\dfrac{1}{\left(1+ab\right)\left(1+\dfrac{b}{a}\right)}=\dfrac{1}{1+ab}\)

Do đó:

\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)

\(VT\ge\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}+\dfrac{1}{1+\dfrac{1}{c}}+\dfrac{1}{1+\dfrac{1}{a}}+\dfrac{1}{1+\dfrac{1}{b}}=3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (2)
LP
Xem chi tiết
SR
Xem chi tiết
MY
19 tháng 1 2023 lúc 19:22

\(ab+bc+ca\le1\)

\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)

\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)

\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)

Bình luận (0)
ND
Xem chi tiết
PV
Xem chi tiết