Những câu hỏi liên quan
TH
Xem chi tiết
H24
3 tháng 2 2020 lúc 21:42

Gọi hai số cần tìm là a và b (a,b≠0).(a,b≠0).

Theo đề bài, vì tổng, hiệu, tích của hai số đó tỉ lệ với 4 : 1 : 45 nên ta có:

a+b4=a−b1=ab45a+b4=a−b1=ab45 (1).

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

a+b4=a−b1=ab45=a+b+a−b4+1=2a5.a+b4=a−b1=ab45=a+b+a−b4+1=2a5.

⇒2a5=ab45⇒2a5=ab45

⇒2aab=545⇒2aab=545

⇒2b=19⇒2b=19

⇒b=2:19⇒b=2:19

⇒b=18.⇒b=18.

Từ (1), áp dụng tính chất dãy tỉ số bằng nhau ta được:

a+b4=a−b1=ab45=a+b−a+b4−1=2b3.a+b4=a−b1=ab45=a+b−a+b4−1=2b3.

⇒2b3=ab45⇒2b3=ab45

⇒2bab=345⇒2bab=345

⇒2a=115⇒2a=115

⇒a=2:115⇒a=2:115

⇒a=30.⇒a=30.

Vậy hai số cần tìm là: 303018.18.

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 2 2020 lúc 21:44

in loi nha hinh nhu no bi viet 2 lan ket qua la30 va 18

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
NT
Xem chi tiết
TD
27 tháng 2 2017 lúc 22:08

x=15

y=9

Bình luận (0)
LH
Xem chi tiết
LT
Xem chi tiết
NL
19 tháng 11 2021 lúc 20:47

Gọi 2 số đó là a và b, theo đề bài ta có:

\(\dfrac{a+b}{5}=\dfrac{a-b}{1}=\dfrac{ab}{12}=\dfrac{a+b+a-b}{5+1}=\dfrac{2a}{6}=\dfrac{a}{3}\)

\(\Rightarrow\dfrac{ab}{12}=\dfrac{a}{3}\Rightarrow\dfrac{b}{12}=\dfrac{1}{3}\Rightarrow b=4\)

\(\Rightarrow\dfrac{a-4}{1}=\dfrac{a}{3}\Rightarrow3a-12=a\)

\(\Rightarrow2a=12\Rightarrow a=6\)

Vậy 2 số đó là 6 và 4

Bình luận (0)
LD
Xem chi tiết

Ta có: a+b/5=a−b=ab/12=k

Từ a + b = 5k và a - b = k ta được a = 3k, b = 2k

Thế vào ab = 12k ta được k = 2

Vậy hai số đó là 6 và 4

Bình luận (0)

Gọi 2 số cần tìm là a và b ( điều kiện \(a\ne0;b\ne0\))

Theo bài ra  tổng, hiệu, tích của chúng tỉ lệ với 5,1,12 : 

Ta có :

\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{a.b}{12}\left(1\right)\) 

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{a+b+a-b}{5+1}=\frac{2a}{6}=\frac{a}{2}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\frac{a}{3}=\frac{a.b}{12}\Rightarrow\frac{a}{a.b}=\frac{3}{12}\Leftrightarrow\frac{1}{b}=\frac{1}{4}\Rightarrow b=4\)

Thay \(b=4\)vào \(\frac{a+b}{5}=\frac{a-b}{1}\)ta được :

\(\frac{a+4}{5}=\frac{a-4}{1}\Leftrightarrow1\left(a+4\right)=5\left(a-4\right)\)

\(\Leftrightarrow a+4=5a-20\Leftrightarrow5a-a=4+20\)

\(\Leftrightarrow4a=24\Rightarrow a=6\)

Vậy 2 số cần tìm là  \(a=6,b=4\)

Bình luận (0)
VT
Xem chi tiết
NT
Xem chi tiết
BV
7 tháng 12 2017 lúc 14:50

Gọi hai số cần tìm là x, y ta có:
\(\left(x+y\right):\left(x-y\right):\left(xy\right)=5:1:12\) \(\Leftrightarrow\dfrac{x+y}{5}=\dfrac{x-y}{1}=\dfrac{xy}{12}\).
\(\dfrac{x+y}{5}=\dfrac{x-y}{1}\Leftrightarrow x+y=5\left(x-y\right)\) \(\Leftrightarrow-4x+6y=0\)\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{2}\).
Đặt \(\dfrac{x}{3}=\dfrac{y}{2}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=2k\end{matrix}\right.\).
Suy ra \(\dfrac{3k-2k}{1}=3k.2k\Leftrightarrow6k^2=k\) \(\Leftrightarrow k\left(6k-1\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}k=0\left(l\right)\\k=\dfrac{1}{6}\end{matrix}\right.\).
Với \(k=\dfrac{1}{6}\) suy ra \(\left\{{}\begin{matrix}x=3k=3.\dfrac{1}{6}=\dfrac{1}{2}\\y=2k=2.\dfrac{1}{6}=\dfrac{1}{3}\end{matrix}\right.\).

Bình luận (0)
NN
Xem chi tiết