Tim x,y:
(4x+3).(x-2)
(x^3-4x)^2-3x^2.|y-3|=0. tim x,y
1. phan tich da thuc thanh nhan tu
a. x^2+3x-5 b. 4x^2-16x+7 c. 5x^2-6x-7 d.x^4+2x^3-4x-4
2. tim x,y bt: x^2+y^2+z^2=xy+yz+zx va x^2012+y^2012+z^2012= 3^2013
3. tim x: a. x^2-4x=21 b. x^2-4x+4=0 c.x^2-6x=2x=11 d. 4^x-12.2^x+32=0
cho hai x ,y thoả mãn x^2+y^2-4x+3=0 tim gtnn,GTLN cua m= x^2+y^2.thanksssssssssssss mọi người
Điều kiện <=> y2 =1 -(x-2)2 \(\ge0< =>\left(x-2\right)^2\le1< =>-1\le x-2\le1< =>1\le x\le3.\)
m = x2+y2 = x2 +1 -(x-2)2 = 4x -3
=> 4.1-3 \(\le m\le\)4.3-3 <=> \(1\le m\le9\)
m Min =1 khi x =1; m Max= 9 khi x =3
các bạn cho mình đi
tim x;y biet:
4x=3y và (x-y)2+(x+y)2= 50
2x=5y và (x+y)3+ (x-y)3= 2960
Bài 1:Ta có:
\(\left(x-y\right)^2+\left(x+y\right)^2=50\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(3-4\right)^2+\left(3+4\right)^2}=\frac{50}{50}=1\)
\(\Rightarrow\begin{cases}\frac{x}{3}=1\Rightarrow x=3\\\frac{y}{4}=1\Rightarrow y=4\end{cases}\)
Bài 2:Ta có:
\(\left(x+y\right)^3+\left(x-y\right)^3=2960\)
\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{\left(x+y\right)^3+\left(x-y\right)^3}{\left(5+2\right)^3+\left(5-2\right)^3}=\frac{2960}{370}=8\)
\(\Rightarrow\begin{cases}\frac{x}{5}=8\Rightarrow x=40\\\frac{y}{2}=8\Rightarrow y=16\end{cases}\)
1) PTTNT
a) x^2 - 4x^2y + 4xy
b)x^2 + 3x + x - 3y
2) Tim GTLN
-2x^2 + 3x - 5
3) tim x,y thuoc z
3xy + 6x - y = 7
Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)
Bài 1:
a)x2-4x2y+4xy
=x(x-4xy+y)
b)đề sai
Bài 3:
3yx + 6x - y = 7
<=> x(3y+6) - (3y+6) = 27
<=> (3y+6)(x+1) = 27
Ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 | 9 | -9 | 27 | -27 | |
3y+6 | 27 | -27 | 9 | -9 | 3 | -3 | 1 | -1 | |
x | 0 | -2 | 2 | -4 | 8 | -10 | 26 | -28 | |
y | 7 | -11 | 1 | -5 | -1 | -3 | \(-\frac{5}{3}\) | \(-\frac{7}{3}\) |
Vậy...
a, Tim x biet:/x-2/+/3-2x/=2x+1
b, Tim x,y thuoc Z biet:xy+2x-y=5
c, tim x,y,z, biet :2x=3y;4y=5zva 4x-3y+5z=7
x^3+4x=x^2y+3y+5 tim x,y
Tim cac so nguyen x,y,z thoa man 4x^2+4x=8y^3-2z^2+4
Vd: sqrt(2) : căn bậc 2 của 2
Mình không biết giải có đúng hay không, nhưng cũng xin góp ý.
pt <=> z=sqrt(2)*sqtr(sprt(2)*Y^3 - X^2 - X + 1) (với x, y, z nguyên)
Suy ra: z nguyên khi và chỉ khi z=2
<=> sqrt(2)*Y^3 - X^2 -X +1 - sqrt(2) = 0 (pt *) (với x, y nguyên)
Khi X nguyên: X^2 + X -1 cũng sẽ nguyên
Suy ra: Điều kiện cần để pt* đúng thì sqrt(2)*Y^3 - sqrt(2) cũng phải nguyên
<=> Y=1
Khi đó:
pt* <=> X^2 + X - 1 = 0 (x nguyên)
pt trên không có nghiệm nguyên.
Vậy: không tồn tại bộ số x, y, z nguyên thổa mãn phương trình đã cho.
Tim z ,y,x
b,x=y/2 va 4x-3y+2z=36
c,x:y:z=3:5:(-2) và 5x-y+3z=124