(1-1/2) x ( 1 - 1/3 ) x ( 1 - 1/4 ) x ... ( 1- 1/2022 )
Tìm x, biết:
( \(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{2023}\) ) . x = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) + \(\dfrac{2020}{3}\)
+ ... + \(\dfrac{1}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = (\(\dfrac{2021}{2}+1\))+(\(\dfrac{2020}{3}+1\))+....+(\(\dfrac{1}{2022}+1\))
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = \(\dfrac{2023}{2}\)+\(\dfrac{2023}{3}\)+....+ \(\dfrac{2023}{2022}\)
(\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\)). x = 2023.( \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\))
vậy x= 2023
Thực hiện phép tính bằng cách thuận tiện nhất ( nếu có thể )
a, 50% + 7/12 - 1/2
b, 2022 x 67 + 2022 x 43 - 2022 x 10
c, 125 - 25 : 3 x 12
d, ( 1/2019x2021 + 1/2020x2022 + 2/2021x2023 ) x ( 1/5 - 1/20 + 1/4 )
\(a,50\%+\dfrac{7}{12}-\dfrac{1}{2}\\ =\dfrac{1}{2}+\dfrac{7}{12}-\dfrac{1}{2}\\ =\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+\dfrac{7}{12}\\ =\dfrac{7}{12}\\ b,2022\times67+2022\times43-2022\times10\\ =2022\times\left(67+43-10\right)\\ =2022\times100\\ =202200.\\ c,125-25:3\times12\)
\(=25\times5-25:3\times12\\ =25\times\left(5-\dfrac{1}{3}\right)\times12\\ =25\times\dfrac{14}{3}\times12\\ =1400\)
a,50%+127−21=21+127−21=(21−21)+127=127b,2022×67+2022×43−2022×10=2022×(67+43−10)=2022×100=202200.c,125−25:3×12
a) 7/12
b) 202200
c) 1400
d) mình ko bt
(1+1/2)*(1+1/3)*(1+1/4)x...x(1+1/2022)
mình đang cần gấp( 1 + 1/2 ) * ( 1 + 1/3 ) * ... * ( 1 + 1/2022 )
= 3/2 * 4/3 * ... * 2023/2022
= 2023/2
1) thực hiện phép tính a)5-(1+1/3):(1-1/3) b)(1+2/3-5/4)-(1-5/4)+2022-2/3 2) Tìm x biết a) 0,7²×X=0,49² b)X:(-0,5)³=(0,5)²
1) \(5-\left(1+\dfrac{1}{3}\right):\left(1-\dfrac{1}{3}\right)\)
\(=5-\dfrac{4}{3}:\dfrac{2}{3}\)
\(=5-\dfrac{4}{3}\cdot\dfrac{3}{2}\)
\(=5-\dfrac{4}{2}\)
\(=5-2\)
\(=3\)
b) \(\left(1+\dfrac{2}{3}-\dfrac{5}{4}\right)-\left(1-\dfrac{5}{4}\right)+2022-\dfrac{2}{3}\)
\(=1+\dfrac{2}{3}-\dfrac{5}{4}-1+\dfrac{5}{4}++2022-\dfrac{2}{3}\)
\(=\left(1-1\right)+\left(\dfrac{2}{3}-\dfrac{2}{3}\right)+\left(-\dfrac{5}{4}+\dfrac{5}{4}\right)+2022\)
\(=0+0+0+2022\)
\(=2022\)
2) \(0,7^2\cdot x=0,49^2\)
\(\Rightarrow x=\dfrac{0,49^2}{0,7^2}\)
\(\Rightarrow x=\left(\dfrac{0,49}{0,7}\right)^2\)
\(\Rightarrow x=\left(0,7\right)^2\)
\(\Rightarrow x=0,49\)
b) \(x:\left(-0,5\right)^3=\left(0,5\right)^2\)
\(\Rightarrow x=\left(0,5\right)^2\cdot\left(-0,5\right)^3\)
\(\Rightarrow x=\left(-0,5\right)^5\)
\(\Rightarrow x=-\dfrac{1}{32}\)
2:
a: =>x*0,49=0,49^2
=>x=0,49
b: =>x=(0,5)^2*(-1)*(0,5)^3=-(0,5)^5
tìm x biết:1+(x-1)^2+(x-1)^4+...+(x-1)^2020=17^2022-1/((x-1)^2-1)
x+1/2021*2022+1/2021*2022+......+1/3*2+1/3*2=1
A=(1-\(\dfrac{1}{2}\)).(1-\(\dfrac{1}{3}\)).(1-\(\dfrac{1}{4}\))x...x(1-\(\dfrac{1}{2022}\)) TÍNH NHANH BIỂU THỨC A
GIÚP EM VỚI Ạ :33
\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2021}{2022}\\ \dfrac{1}{2022}\)
Bài 3: tìm x biết
a) x^+3x=0
b) (x-1)(x^+x+1)-x(x-2)(x+2)=7
c) x(x-2022)+4(2022-x)=0
giúp mình vs ạ , mình cần gấp 🌷
câu a chưa đủ đề em hấy
c, \(x\)(\(x\) - 2022) + 4.(2022 - \(x\)) = 0
(\(x\) - 2022).(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x-2022=0\\x+4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2022\\x=4\end{matrix}\right.\)
b, (\(x\) - 1)(\(x^2\) + \(x\) + 1) - \(x\)(\(x\) - 2)(\(x\) + 2) = 7
\(x^3\) - 1 - \(x\).(\(x^2\) - 4) = 7
\(x^3\) - 1 - \(x^3\) + 4\(x\) = 7
(\(x^3\) - \(x^3\)) - 1 + 4\(x\) = 7
- 1 + 4\(x\) = 7
4\(x\) = 7 + 1
4\(x\) = 8
\(x\) = 8:4
\(x\) = 2
Tìm x biết 1/1*2 + 1/2*3 + ... + 1/x(x+1)=2022/2023
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2022}{2023}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2023}\)
\(\Rightarrow x+1=2023\)
\(\Rightarrow x=2022\)
Vậy x = 2022
#kễnh
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}\)
= \(\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{x+1-x}{x.\left(x+1\right)}\)
= \(\dfrac{2}{1.2}-\dfrac{1}{1.2}+\dfrac{3}{2.3}-\dfrac{2}{2.3}+...+\dfrac{x+1}{x.\left(x+1\right)}-\dfrac{x}{x.\left(x+1\right)}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
= \(1-\dfrac{1}{x+1}\) =\(\dfrac{2022}{2023}\)
= \(\dfrac{2023}{2023}-\dfrac{1}{x+1}=\dfrac{2022}{2023}\)
⇒ \(x+1=2023\)
\(x=2023-1=2022\)