Những câu hỏi liên quan
LD
Xem chi tiết
NT
28 tháng 1 2020 lúc 21:55

áp dụng BĐT xy+yz+zx<= x2+y2+z2  chia 350 đảo dấu thì cùng chiều

đặt 1/(x2+y2+z2) ra làm nhân tử chung rồi 350+386=736

rồi áp dụng BĐT Cô-si SVAC-XƠ

thì x2+y2+z2<= (x+y+z)2/3 = 1/3

rồi chia 1 cho 1/3 rồi 3.736=2208>2015

Bình luận (0)
 Khách vãng lai đã xóa
AJ
Xem chi tiết
NL
3 tháng 11 2019 lúc 15:55

\(P=\frac{\sqrt{386}^2}{x^2+y^2+z^2}+\frac{\sqrt{700}^2}{2\left(xy+yz+zx\right)}\ge\frac{\left(\sqrt{386}+\sqrt{700}\right)^2}{\left(x+y+z\right)^2}=\left(\sqrt{386}+\sqrt{700}\right)^2\)

Bây giờ chỉ cần chứng minh:

\(\left(\sqrt{386}+\sqrt{700}\right)^2>2015\)

Ta có \(\left(\sqrt{386}+\sqrt{700}\right)^2>\left(\sqrt{361}+\sqrt{676}\right)^2=2025>2015\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
VD
8 tháng 6 2016 lúc 10:01

min xấp xỉ 2126>2015

Bình luận (0)
LK
Xem chi tiết
LK
25 tháng 4 2016 lúc 18:09

trả lời giúp mình đi, mình lập 5 nick khác k cho, tất cả được 6 k

Bình luận (0)
VH
Xem chi tiết
PK
24 tháng 4 2020 lúc 9:20

Violympic toán 9Violympic toán 9

Bình luận (0)
LK
Xem chi tiết
LK
25 tháng 4 2016 lúc 17:29

đề sai

Bình luận (0)
H24
Xem chi tiết
LH
7 tháng 6 2021 lúc 17:38

\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)

Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)

Bình luận (0)
TQ
Xem chi tiết
NV
17 tháng 2 2019 lúc 21:27

Đk: $x\geq \frac{1}{2}$

Pt $\Leftrightarrow 4x^2+3x-7=4(\sqrt{x^3+3x^2}-2)+2(\sqrt{2x-1}-1)$

$\Leftrightarrow +4\frac{(x-1)(x+2)^2}{\sqrt{x^3+3x^2}+2}+4\frac{x-1}{\sqrt{2x-1}+1}-(x-1)(4x+7)=0$

$\Leftrightarrow (x-1)[\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-(4x+7)]=0$

$\Leftrightarrow x=1\vee \frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7=0$ $(*)$

Xét hàm số $f(x)=\frac{4(x+2)^2}{\sqrt{x^3+3x^2}+2}+\frac{4}{\sqrt{2x-1}+1}-4x-7,x\in [\frac{1}{2};+\infty )$ thì $f(x)>0,\forall x\in [\frac{1}{2};+\infty )$

$\Rightarrow $ Pt $(*)$ vô nghiệm

Bình luận (0)
PV
Xem chi tiết
TD
26 tháng 4 2020 lúc 8:42

Ta có : \(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\)

\(=\frac{x^2}{x^3-xyz+2010x}+\frac{y^2}{y^3-xyz+2010y}+\frac{z^2}{z^3-xyz+2010z}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+3\left(xy+yz+xz\right)\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3xy^2+3x^2y+3x^2z+3xz^2+3y^2z+3yz^2}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)

Bình luận (0)
 Khách vãng lai đã xóa