1) rút gọn A, tìm a để A=4
\(A=\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}\) với a >=4
1, A= \(\dfrac{5\sqrt{a}-3}{\sqrt{a}-2}+\dfrac{3\sqrt{a}}{\sqrt{a}+2}-\dfrac{a^2+2\sqrt{a}+8}{a-4}=\)
Với a>0; a≠4
a, rút gọn A
b, tìm tất cả giá trị của a để A >0
a:
Sửa đề: a+2căn a+8
\(=\dfrac{5a+10\sqrt{a}-3\sqrt{a}-6+3a-6\sqrt{a}-a-2\sqrt{a}-8}{\left(a-4\right)}\)
\(=\dfrac{7a-\sqrt{a}-14}{\left(a-4\right)}\)
b: A>0
=>(7a-căn a-14)/(a-4)>0
=>a>4 hoặc 0<a<(1+căn 393)/14
Với 4 < a < 8. Rút gọn \(G=\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}\)
\(G=\sqrt{a-4+4\sqrt{a-4}+4}+\sqrt{a-4-4\sqrt{a-4}+4}\)
\(=\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2=2\sqrt{a-4}\)
\(G = \sqrt{a + 4 \sqrt{a – 4}} + \sqrt{a – 4\sqrt{a – 4}} \) \(= \sqrt{a – 4 + 4 + 4\sqrt{a – 4}} + \sqrt{a – 4 + 4 – 4\sqrt{a – 4}}\)
\(= \sqrt{\sqrt{a - 4}^2 + 2^2 + 4\sqrt{a – 4}} + \sqrt{\sqrt{a - 4}^2 + 2^2 - 4\sqrt{a – 4}}\)
\(= \sqrt{(\sqrt{(a – 4)} + 2)^2} + \sqrt{(\sqrt{(a – 4)} - 2)^2}\)
\(= \sqrt{a – 4} + 2 +|\sqrt{a – 4} – 2|\)
+) Với \(4 < a < 8 ⇔ 0 < a – 4 < 4 ⇔ \sqrt{0} < \sqrt{a – 4} < \sqrt{4} ⇔ 0 <\sqrt{a – 4} < 2 \)
Do đó, ta có: \(G = \sqrt{a – 4} + 2 + 2 - \sqrt{a – 4} \) (vì \(2 > \sqrt{a – 4}\))
\(=4\)
➤Với \(4 < a < 8 \) thì \(G = 4 \)
1 like cho Ng.Hữu Minh và nhiều like cho H.Việt Tân.
Cho biểu thức
A =\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right).\dfrac{a-4}{\sqrt{4a}}\) với a ≥0,a≠4
a) Rút gọn biểu thức A
b) Tìm giá trị của a để A -2 < 0
c) Tìm giá trị của a nguyên để biểu thức \(\dfrac{4}{A+1}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{2a}\)
\(=\sqrt{a}+2\)
b: A-2<0
=>\(\sqrt{a}+2-2< 0\)
=>\(\sqrt{a}< 0\)
=>\(a\in\varnothing\)
c: Bạn ghi đầy đủ đề đi bạn
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
Bài 1
a) \(P=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) (ĐK : x\(\ge0\) ; x\(\ne\) 1)
\(=\frac{3a+\sqrt{9a}-3}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\)
\(=\frac{3a+\sqrt{9a}-3-\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{3a+\sqrt{9a}-3-a+1-a+4}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-1}\)
b) \(P=\frac{\sqrt{a}+1}{\sqrt{a}-1}=\frac{\sqrt{a}-1+2}{\sqrt{a}-1}=1+\frac{2}{\sqrt{a}-1}\)
Vậy để P là số nguyên thì: \(\sqrt{a}-1\inƯ\left(2\right)\)
Mà Ư(2)={-1;1;2;-1}
=> \(\sqrt{a}-1\in\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-1\) | 1 | -1 | 2 | -2 |
a | 4 | 0 | 9 | \(\sqrt{a}=-1\) (ktm) |
vậy a={0;4;9} thì P nguyên
Bài 2
\(P=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)(ĐK:a\(\ge\)8)
\(=\frac{\sqrt{\left(a-4\right)+4\sqrt{a-4}+4}+\sqrt{\left(a-4\right)-4\sqrt{a-4}+4}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}}{1-\frac{4}{a}}\)
\(=\sqrt{a-4}+2+\sqrt{a-4}-2:\frac{a-4}{a}\)
\(=2\sqrt{a-4}\cdot\frac{a}{a-4}\)
\(=\frac{2a}{\sqrt{a-4}}\)
Bài 1 : Cho biểu thức A=(\(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}})\):\(\dfrac{\sqrt{a}+1}{a-1}\) với a>0 , a≠1
a) Rút gọn b.thức A
b) Tìm các giá trị của a để A<0
Bài 2 : Rút gọn các b.thức :
A =\((\dfrac{3\sqrt{x}+6}{x-4}+\dfrac{\sqrt{x}}{\sqrt{x}-2}):\dfrac{x-9}{\sqrt{x}-3}\) với x ≥ 0 , x ≠ 4 , x ≠ 9
B = \(3\sqrt{8}-\sqrt{50}-\sqrt{(\sqrt{2}-1)^2}\)
C = \(\dfrac{2}{x-1}\times\sqrt{\dfrac{x^2-2x+1}{4x^2}}\) với 0 < x < 1
D = \((\dfrac{1-a\sqrt{a
}}{1-\sqrt{a}}+\sqrt{a})(\dfrac{1-\sqrt{a}}{1-a})^2\) với a ≥ 0 , a ≠ 1
( giúp hộ em với ạ , em đang cần gấp ạ )
Cho biếu thức: P= \(\dfrac{a+4\sqrt{a}+4}{\sqrt{2+a}}+\dfrac{4-a}{2-\sqrt{a}}\) ( với a>o; a \(\ne\)4)
a) rút gọn biểu thức P.
b) tìm giá trị của a sao cho P=a+1.
Cho biểu thức:
\(F=\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\)
a) Rút gọn F
b) Tìm a để F nhỏ nhất
c) Tìm a để \(\sqrt{F}>F\)
d) So sánh F với \(\dfrac{1}{\sqrt{a}}\)
\(B=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^{^2}}}}\)RÚT GỌN B với a>8
\(=\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
\(=\frac{\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}\right)-2}}{\sqrt{\left(1-\frac{4}{a}\right)^2}}\)
\(=\frac{\sqrt{a-4}+2+\sqrt{a-4}-2}{1-\frac{4}{a}}\)
\(=\frac{2a}{\sqrt{a-4}}\)
Bài 2. Cho biểu thức : P = \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}\)+\(\dfrac{4-a}{2-\sqrt{a}}\)( Với a 0 ; a ≠ 4 )
a) Rút gọn biểu thức P; b)Tìm giá trị của a sao cho P = a + 1.
\(a,P=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\\ P=\sqrt{a}+2+2+\sqrt{a}=2\sqrt{a}+4\\ b,P=a+1\Leftrightarrow a+1=2\sqrt{a}+4\\ \Leftrightarrow a-2\sqrt{a}-3=0\\ \Leftrightarrow\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)=0\\ \Leftrightarrow\sqrt{a}=3\left(\sqrt{a}\ge0\right)\\ \Leftrightarrow a=9\left(tm\right)\)