BQ

Với 4 < a < 8. Rút gọn \(G=\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}\)

NT
25 tháng 2 2022 lúc 21:42

\(G=\sqrt{a-4+4\sqrt{a-4}+4}+\sqrt{a-4-4\sqrt{a-4}+4}\)

\(=\sqrt{\left(\sqrt{a-4}+2\right)^2}+\sqrt{\left(\sqrt{a-4}-2\right)^2}\)

\(=\sqrt{a-4}+2+\sqrt{a-4}-2=2\sqrt{a-4}\)

Bình luận (2)
 Nguyễn Huy Tú đã xóa
HT
25 tháng 2 2022 lúc 21:42

\(G = \sqrt{a + 4 \sqrt{a – 4}} + \sqrt{a – 4\sqrt{a – 4}} \) \(= \sqrt{a – 4 + 4 + 4\sqrt{a – 4}} + \sqrt{a – 4 + 4 – 4\sqrt{a – 4}}\)

                                                 \(= \sqrt{\sqrt{a - 4}^2 + 2^2 + 4\sqrt{a – 4}} + \sqrt{\sqrt{a - 4}^2 + 2^2 - 4\sqrt{a – 4}}\)

                                                 \(= \sqrt{(\sqrt{(a – 4)} + 2)^2} + \sqrt{(\sqrt{(a – 4)} - 2)^2}\)

                                                  \(= \sqrt{a – 4} + 2 +|\sqrt{a – 4} – 2|\)

+) Với \(4 < a < 8 ⇔ 0 < a – 4 < 4 ⇔ \sqrt{0} < \sqrt{a – 4} < \sqrt{4} ⇔ 0 <\sqrt{a – 4} < 2 \)

Do đó, ta có: \(G = \sqrt{a – 4} + 2 + 2 - \sqrt{a – 4} \) (vì \(2 > \sqrt{a – 4}\))

                          \(=4\)

➤Với \(4 < a < 8 \) thì \(G = 4 \)

Bình luận (1)
BQ
25 tháng 2 2022 lúc 21:56

1 like cho Ng.Hữu Minh và nhiều like cho H.Việt Tân.

Bình luận (0)

Các câu hỏi tương tự
TG
Xem chi tiết
MN
Xem chi tiết
MM
Xem chi tiết
HM
Xem chi tiết
MV
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
VH
Xem chi tiết