Ta có : A =(1-a)/(căn a) Tìm giá trị của a để A
Cho biểu thức A=\(\dfrac{x}{\sqrt{x}+1}\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}\)
a,Tính giá trị của A khi x=4
b,Tính giá trị của A khi x=(2-căn 3)^2
c,Tính giá trị của A khi x=7-2 căn 3
d,Tìm x để A=2
e,TÌm x để A>1
a,Tính giá trị của A khi x=4
b,Tính giá trị của A khi x=(2-căn 3)^2
c,Tính giá trị của A khi x=7-2 căn 3
d,Tìm x để A=2
e,TÌm x để A>1
\(A=\dfrac{x}{\sqrt{x}+1}+\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}\)
A= căn x +1/ căn x-2+2 ×căn x/ căn x +2+2+5 căn x/4-x
a, tìm điều kiện xác định
b, rút gọn A
C, tìm x để a =2
D, tìm x nguyên để A có giá trị nguyên
E, tìm x thuộc R để A có giá trị nguyên
Cho biểu thức A=\(\dfrac{x}{\sqrt[]{x}}+\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}vớix>0\)
a,Tính giá trị của A khi x=4
b,Tính giá trị của A khi x=(2-căn 3)^2
c,Tính giá trị của A khi x=7-2 căn 3
d,Tìm x để A=2
e,TÌm x để A>1
a: \(A=\sqrt{x}+\dfrac{\sqrt{x}\left(1+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\sqrt{x}+\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
Khi x=4 thì \(A=2+\dfrac{2\cdot2+1}{2+1}=2+\dfrac{5}{3}=\dfrac{11}{3}\)
b: Khi x=(2-căn 3)^2 thì \(A=2-\sqrt{3}+\dfrac{2\left(2-\sqrt{3}\right)+1}{2-\sqrt{3}+1}\)
\(=2-\sqrt{3}+\dfrac{4-2\sqrt{3}+1}{3-\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\left(3-\sqrt{3}\right)+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{6-2\sqrt{3}-3\sqrt{3}+3+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{14-7\sqrt{3}}{3-\sqrt{3}}\)
d: A=2
=>\(\dfrac{x+\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}+1}=2\)
=>\(x+3\sqrt{x}+1=2\left(\sqrt{x}+1\right)=2\sqrt{x}+2\)
=>\(x+\sqrt{x}-1=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{-1+\sqrt{5}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{-1-\sqrt{5}}{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{6-2\sqrt{5}}{4}=\dfrac{3-\sqrt{5}}{2}\)
B= căn a+ 3/ 2 căn a-6 - 3 - căn a/ 2 căn a + 6
a. rút gọn B
b. với giá trị nào của a thì b>1; b<1
c. tìm các giá trị của a để b=4
a, \(B=\frac{\sqrt{a}+3}{2\sqrt{a}-6}-\frac{3-\sqrt{a}}{2\sqrt{a}+6}=\frac{\left(2\sqrt{a}+6\right)\left(\sqrt{a}+3\right)+\left(2\sqrt{a}-6\right)\left(\sqrt{a}-3\right)}{4a-36}\)
\(=\frac{2a+12\sqrt{a}+18+2a-12\sqrt{a}+18}{4a-36}=\frac{4a+36}{4a-36}=\frac{a+9}{a-9}\)
b, Ta có : \(B>1\Rightarrow\frac{a+9}{a-9}>1\Leftrightarrow\frac{a+9}{a-9}-1>0\)
\(\Leftrightarrow\frac{a+9-a+9}{a-9}>0\Leftrightarrow\frac{18}{a-9}>0\Rightarrow a-9>0\Leftrightarrow a>9\)vì 18 > 0
\(B< 1\Rightarrow\frac{a+9}{a-9}< 1\Leftrightarrow\frac{a+9}{a-9}-1< 0\)
\(\Leftrightarrow\frac{a+9-a+9}{a-9}< 0\Leftrightarrow\frac{18}{a-9}< 0\Rightarrow a-9< 0\Leftrightarrow a< 9\)vì 18 > 0
c, Ta có : \(B=4\Rightarrow\frac{a+9}{a-9}=4\Rightarrow a+9=4a-36\Leftrightarrow3a=45\Leftrightarrow a=15\)
Vậy a = 15 thì B = 4
Cho A= căn bậc hai của x+1/căn bậc hai của x-2 . Tìm số nguyên x để A có giá trị là một số nguyên
Cho biểu thức A = x căn x+1/x-1 - x -1/căn x+ 1 a,Tìm điều kiện xác định và rút gọn biểu thức A b, Tìm giá trị của biểu thức khi X = 9/4 c, Tìm tất cả giá trị của x để A
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{x+\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Khi x=9/4 thì A=3/2:1/2=3/2*2=3
Căn x - 1 trên căn x. Tìm A để A đạt giá trị lớn nhất, tìm giá trị lớn nhất đó
cho A=căn bậc hai của x-3/2. tìm x thuộc Zvà x<30 để A có giá trị nguyên
cho B=5/căn bậc hai của x-1. tìm x thuộc Z để B có giá trị nguyên