Những câu hỏi liên quan
NP
Xem chi tiết
HH
28 tháng 8 2016 lúc 20:15

giả sử s chia hết cho 49 => 4S=4n^2+12n-152 = (2n^2 + 3)^2 - 161 chia hết cho 7=> (2n^2 + 3)^2   chia hết cho 7 ( do 161 chia hết cho 7)  => 2n^2 + 3 chia hết cho 7 => (2n^2 + 3)^2   chia hết cho 49 nhân ra ta đc 4n^2 + 12 n +9  chia hết cho 49 => 4n^2 + 12 n +9  -161 ko chia hết cho 49 (do 161 ko chia hết cho 49) => ko xảy ra điều giả sử => đpcm

Bình luận (0)
NC
Xem chi tiết
PT
17 tháng 4 2017 lúc 8:50

Giả sử tồn tại n sao cho \(S=n^2 + 3n - 38\) chia chết cho \(49\).

Khi đó xét biểu thức:

\(n^2 - 4n + 4 = n^2 + 3n - 7n -38 + 42 \)

\(= n^2 + 3n - 38 - 7(n - 6)\) chia hết cho \(7\)

Biểu thức đem xét là \(n^2 - 4n + 4\) viết \(-4n \)

\(= -7n + 3n; 4 \)

\(= -38 + 42\)

\(\Rightarrow\)\( n^2 - 4n + 4 \)

\(= (n - 2)^2\) chia hết cho \(7\) hay \(n-2\) chia hết cho \( 7\)

Gọi \(n - 2 = 7t \)

\(\Rightarrow\)\( n = 2 + 7t\). Thay vào \(S\) ta có:

\(S = (2 + 7t)^2 + 3(2 + 7t) - 38 \)

\(= 4 + 28t + 49t^2 + 6 + 21t - 38 \)

\(= 49t^2 + 49t - 28 \)

\(\Rightarrow S\) không chia hết cho \(49\)

\(\RightarrowĐpcm\)

Bình luận (0)
H24
Xem chi tiết
XO
9 tháng 7 2021 lúc 10:24

a) Ta có n3 - n + 4 

= n(n2 - 1) + 4

= (n - 1)n(n + 1) + 4 

Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp) 

mà 4 \(⋮̸\)

=> n3 - n + 4 không chia hết cho 3

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
KL
22 tháng 11 2021 lúc 18:33

Ta có: n2 + 3n – 10 + 14 = ( n – 2 ) ( n + 5 ) + 14

Ta có: n + 5 – (n – 2) = 7 => Hai số nguyên n + 5 và n – 2 cùng chia hết cho 7 hoặc chia cho 7 có cùng số dư.

+ Nếu hai số nguyên n + 5 và n – 2 cùng chia hết cho 7 => ( n + 5 ) ( n – 2 ) ⋮ 49 => P chia cho 49 dư 14.

+ Nếu hai số nguyên n + 5 và n – 2 chia cho 7 có cùng số dư thì (n + 5)(n – 2) không chia hết cho 7, 14 ⋮ 7 nên suy ra: P không chia hết cho 7

Suy ra P không chia hết cho 49.

Sai thì thôi nhan mn!

# Kukad'z Lee'z

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
2 tháng 10 2023 lúc 7:16

Ta có:

\(n^2+3n+11\) 

\(=n^2+3n+18-7\)

\(=\left(n+2\right)\left(n+9\right)-7\)

Giả sử: \(n^2+3n+11\) ⋮ 49 \(\Rightarrow n^2+3n+11\) ⋮ 7

Mà: \(\left(n+9\right)-\left(n+2\right)\) ⋮ 7

Đồng thời ta có: \(\left(n+9\right)\left(n+2\right)\) ⋮ 49 ngược lại 7 \(⋮̸\)49 

Nên điểu giả sử là sai \(\Rightarrow n^2+3n+11⋮̸49\left(dpcm\right)\) 

 

Bình luận (0)
SH
Xem chi tiết
PM
Xem chi tiết
NT
Xem chi tiết
LH
6 tháng 7 2016 lúc 17:56

Giả sử tồn tại n sao cho n2 + 3n - 38 chia chết cho 49. 
Khi đó: Xét biểu thức n2 - 4n + 4 = n2 + 3n - 7n - 38 + 42 = n2 + 3n - 38 - 7(n - 6) chia hết cho 7 
Biểu thức đem xét là n2 - 4n + 4 viết -4n = -7n + 3n; 4 = -38 + 42
=> n2 - 4n + 4 = (n - 2)2 chia hết cho 7 hay n - 2 chia hết cho 7; 
Gọi n - 2 = 7t => n = 2 + 7t. Thay vào S ta có: 
S = (2 + 7t)2 + 3(2 + 7t) - 38 = 4 + 28t + 49t2 + 6 + 21t - 38 = 49t2 + 49t - 28 
=> Không chia hết cho 49 
=> ĐPCM

Bình luận (2)
DK
Xem chi tiết