Ôn tập toán 7

NT

Cho n là số tự nhiên. Chứng minh rằng n2+3n-38 không chia hết cho 49.

Bạn nào biết cách làm thì giúp mình trình bày lời giải chi tiết nha

Thanks nhìu á yeu

LH
6 tháng 7 2016 lúc 17:56

Giả sử tồn tại n sao cho n2 + 3n - 38 chia chết cho 49. 
Khi đó: Xét biểu thức n2 - 4n + 4 = n2 + 3n - 7n - 38 + 42 = n2 + 3n - 38 - 7(n - 6) chia hết cho 7 
Biểu thức đem xét là n2 - 4n + 4 viết -4n = -7n + 3n; 4 = -38 + 42
=> n2 - 4n + 4 = (n - 2)2 chia hết cho 7 hay n - 2 chia hết cho 7; 
Gọi n - 2 = 7t => n = 2 + 7t. Thay vào S ta có: 
S = (2 + 7t)2 + 3(2 + 7t) - 38 = 4 + 28t + 49t2 + 6 + 21t - 38 = 49t2 + 49t - 28 
=> Không chia hết cho 49 
=> ĐPCM

Bình luận (2)

Các câu hỏi tương tự
NM
Xem chi tiết
CD
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
NQ
Xem chi tiết
CD
Xem chi tiết
TY
Xem chi tiết