CM Các đẳng thức sau
1) (a+b)^2-(a-b)^2=4ab
2) a^3+b^3=(a+b)^3-3ab(a+b)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh các đẳng thức :
1) (a + b)^2= a^2 + 2ab + b^2
2) ( a-b)^3=a^3-3a^2b+3ab^2-b^3
1) \(\left(a+b\right)^2\)
\(=\left(a+b\right)\left(a+b\right)\)
\(=a^2+ab+ab+b^2\)
\(=a^2+2ab+b^2\left(dpcm\right)\)
2) \(\left(a-b\right)^3\)
\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)
\(=\left(a^2-ab-ab+b^2\right)\left(a-b\right)\)
\(=\left(a^2-2ab+b^2\right)\left(a-b\right)\)
\(=a^3-a^2b-2a^2+2ab^2+ab^2-b^3\)
\(=a^3-3a^2b+3ab^2-b^3\left(dpcm\right)\)
`a)`
`(a+b)^2`
`=(a+b)(a+b)`
`=a^2+ab+ab+b^2`
`=a^2+2ab+b^2`
`->` ĐPCM
`b)` `(a-b)^3`
`=(a-b)(a-b)(a-b)`
`=(a^2-2ab+b^2)(a-b)`
`=a^3-3a^2b+3ab^2-b^3`
`->` ĐPCM
Trong các khai triển hằng đẳng thức sau, khai triển nào sai?
A.(A + B)^2=A^2+2AB+B^2
B.(A + B)^3=A^2+2A^2B+2AB^2+B^3
C.(A - B)^2=A^2-2AB+B^2
D.(A - B)^2=A^3-3A^2B+3AB^2-B^3
Chứng minh các đẳng thức:
a) a 3 + b 3 = ( a + b ) 3 − 3 a b ( a + b ) ;
b) a 3 − b 3 = ( a − b ) 3 + 3 ab ( a − b ) .
Chứng Minh các đẳng thức sau :
1, a3+b3=(a+b) 3-3ab (a+b)
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)
\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)
Chứng minh hằng đẳng thức:
1) (a+b)^2-(a-b)^2=4ab
3) (a+b)^2-4ab=(a-b)^2
5) a^3+b^3=(a+b)^3-3ab(a+b)
1) biến đổi vế trái:
= a2+2ab+b2 -a2 +2ab -b2
=4ab = vế phải ( đpcm)
3;5 tuong tu
1) (a + b)2 - (a - b)2 = a2 + 2ab + b2 - a2 + 2ab - b2 = 4ab
3) (a + b)2 - 4ab = a2 + 2ab + b2 - 4ab = a2 - 2ab + b2 = (a - b)2
5) a3 + b3 = a3 + 3a2b + 3ab2 + b3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
1) (a+b)^2 - (a-b)^2 = 4ab
VT= (a + b - a +b) (a+b + a-b)
= 2b * 2a
= 4ab = VP
Vậy (a+b)^2 - (a-b)^2 = 4ab
2) (a+b)^2 - 4ab = (a-b)^2
VT= (a+b)^2 - 4ab
= a^2 + 2ab + b^2 - 4ab
= a^2 - 2ab + b^2
= (a-b)^2 = VP
Vậy (a+b)^2 - 4ab = (a-b)^2
1.Chứng minh đẳng thức
a,(A+B)^2=A^2+2AB+B^2
b,(A+B)^3=A^2+3A^2 B+3AB^2+B^3
c,A^2-B^2=(A+B).(A+B)
d,A^3-B^3=(A-B).(A^2+AB+B)
Các bn ơi giúp mk với mk cần gấp!!!!Plz
a) \(\left(A+B\right)^2=\left(A+B\right)\left(A+B\right)=A^2+AB+AB+B^2=A^2+2AB+B^2\)
b) \(\left(A+B\right)^3=\left(A+B\right)^2\left(A+B\right)=\left(A^2+2AB+B^2\right)\left(A+B\right)\)( NHÂN ra nốt hộ mk nha ) :D !
c)\(\left(A+B\right)\left(A-B\right)=A^2+AB-AB-B^2=A^2-B^2\)
ý d tương tự nha :D !
Chứng minh đẳng thức sau:
(a+b)3=a3+3a2b+3ab2+b3
(a+b)3=(a+b)(a+b)(a+b)
=a(a+b)(a+b)+b(a+b)(a+b)
=(a2+ab)(a+b)+(ab+b2)(a+b)
=(a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b3)
=a3+a2b+a2b+ab2+a2b+ab2+ab2+b3
=a3+a2b+a2b+a2b+ab2+ab2+ab2+b3
=a3+3a2b+3ab2+b3
vậy (a+b)3 = a3 +3a2b +3ab2 + b3 =>dpcm
c/m đẳng thức 2ab/a-b-a^3+b^3/b^2-a^2=a^3-a^2b-ab^2-2b^2/a^2-3ab+2b^2
??????????????????????????????????
Cho a + b = 1. Tính giá trị của các biểu thức sau: M = a^3 + b^3 + 3ab(a^2 + b^2) + 6a^2b^2(a + b).
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\)
\(=1-3ab+3ab\cdot\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab-6a^2b^2+6a^2b^2=1-3ab\)
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\\ M=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left(a^2+b^2\right)+6a^2b^2\\ M=1-3ab+3ab\left(a^2+b^2+2ab\right)=1-3ab+3ab\left(a+b\right)^2\\ M=1-3ab+3ab=1\)