Giải PT sau: \(\sqrt{3x^2}\) \(-\) \(\left(1-\sqrt{3}\right)\)x \(-\) 1 = 0
Giải PT sau :
\(3x\left(2+\sqrt{9x^2+3}\right)-\left(4x+1\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
1) giải pt \(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x+1\right)\sqrt{3x+2}=0\)
giải pt vô tỉ sau
\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
T sợ chỉ dám liên hợp thôi, nhường cách bình phương cho 1 ng` chăm chỉ :(
\(pt\Leftrightarrow6x+3x\sqrt{9x^2+3}+4x+2+\left(4x+2\right)\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow2\left(5x+1\right)+\left(3x\sqrt{9x^2+3}+\dfrac{6\sqrt{21}}{25}\right)+\left(\left(4x+2\right)\sqrt{x^2+x+1}-\dfrac{6\sqrt{21}}{25}\right)=0\)
\(\Leftrightarrow2\left(5x+1\right)+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(5x+1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+1\right)\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}=0\)
\(\Leftrightarrow\left(5x+1\right)\left(2+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}\right)=0\)
\(\Rightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
giải pt sau : \(x^3-3x^2-3x+2\sqrt{\left(x+1\right)^3}=0\)
ĐKXĐ: ...
\(\Leftrightarrow x^3-3x\left(x+1\right)+2\sqrt{\left(x+1\right)^3}=0\)
Đặt \(\left\{{}\begin{matrix}x=a\\\sqrt{x+1}=b\end{matrix}\right.\)
\(\Rightarrow a^3-3ab^2+2b^3=0\)
\(\Leftrightarrow\left(a+2b\right)\left(a-b\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}2b=-a\\a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=-x\left(x\le0\right)\\x=\sqrt{x+1}\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x-4=0\\x^2-x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2-2\sqrt{2}\\x=\frac{1+\sqrt{5}}{2}\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $x\geq -1$
Đặt $\sqrt{x+1}=a(a\geq 0)$ thì PT trở thành:
$x^3-3x(x+1)+2\sqrt{(x+1)^3}=0$
$\Leftrightarrow x^3-3xa^2+2a^3=0$
$\Leftrightarrow (x^3-xa^2)-(2xa^2-2a^3)=0$
$\Leftrightarrow x(x-a)(x+a)-2a^2(x-a)=0$
$\Leftrightarrow (x-a)(x^2+ax-2a^2)=0$
$\Leftrightarrow (x-a)[(x+a)(x-a)+a(x-a)]=0$
$\Leftrightarrow (x-a)^2(x+2a)=0$
Nếu $x-a=0$
$\Rightarrow x^2=a^2\Leftrightarrow x^2=x+1$
$\Rightarrow x=\frac{1\pm \sqrt{5}}{2}$. Vì $x=a\geq 0$ nên $x=\frac{1+\sqrt{5}}{2}$
Nếu $x+2a=0$
$\Rightarrow x^2=4a^2\Leftrightarrow x^2=4(x+1)$
$\Rightarrow x=2\pm 2\sqrt{2}$. Mà $x=-2a\leq 0$ nên $x=2-2\sqrt{2}$
Vậy..........
giải pt :
a, \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
b, \(2\sqrt[3]{3x-2}+3\sqrt{6-5x}-8=0\)
c, \(\left(x+3\right)\sqrt{-x^2-8x+48}=x-24\)
d, \(\sqrt[3]{\left(2-x\right)^2}+\sqrt[3]{\left(7+x\right)\left(2-x\right)}=3\)
e, \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
Áp dụng nội suy niu tơn để giải pt sau
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{2}\right)}=3x-1\)
Giải pt sau
\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
Ve trái ; bn nhân trong ngoặc ra
vế phải : 3x2+2x-1=(3x-1)(x+1)
Roi sau do nhom co hang tu chung là đc
Giải PT: \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right).\left(x^2-3x+5\right)}=4-2x\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)