Những câu hỏi liên quan
UN
Xem chi tiết
H24
Xem chi tiết
LN
21 tháng 11 2018 lúc 19:55

về hỏi cô giáo ấy

Bình luận (0)
NT
Xem chi tiết
AN
29 tháng 7 2017 lúc 9:27

Ta có:

\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)

\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)

\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)

Dấu = xảy ra khi \(x=1\)

Bình luận (0)
TH
Xem chi tiết
NL
7 tháng 2 2022 lúc 11:57

ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\-\dfrac{3}{2}\le x\le-1\end{matrix}\right.\)

\(\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)+\sqrt{x^2-1}=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2+\sqrt{x^2-1}=0\)

Do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(\sqrt{2x+3}-1\right)^2\ge0\\\sqrt{x^2-1}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ

\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(\sqrt{2x+3}-1\right)^2=0\\\sqrt{x^2-1}=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

Vậy pt có nghiệm duy nhất \(x=-1\)

Bình luận (0)
PD
Xem chi tiết
HL
26 tháng 2 2016 lúc 8:11

Điều kiện \(\begin{cases}x-1\ge0\\19-x\ge0\end{cases}\)  \(\Leftrightarrow\)  \(x\in\left[1;19\right]\)

Ta thấy ngay phương trình có nghiệm x=10

Nghiệm này thuộc \(\left[1;19\right]\)  

Mặt khác, đặt \(f\left(x\right)=x^2+2x+\sqrt{x-1}\)

                        \(g\left(x\right)=\frac{1000}{x}+\sqrt{19-x}+20\)

Ta dễ dàng kiểm tra \(f\left(x\right)\) là hàm số đồng biến, \(g\left(x\right)\)  là hàm số dị biến trên \(\left[1;19\right]\) 

Vậy \(x=10\) là nghiệm duy nhất của phương trình

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
CH
Xem chi tiết
LN
20 tháng 10 2017 lúc 22:12

đến câu hỏi tương tự hình như có hay sao á

chúc may mắn
 

Bình luận (0)
TA
7 tháng 11 2017 lúc 21:48

:Ở bàn học lớp mấy vậy

Bình luận (0)
NA
20 tháng 11 2017 lúc 21:03

em mới lớp 4 hông hieru âu chị ơi

Bình luận (0)
LN
Xem chi tiết