Những câu hỏi liên quan
PN
Xem chi tiết
TT
Xem chi tiết
NT
10 tháng 10 2021 lúc 22:35

1: Xét tứ giác AMND có 

\(\widehat{ADN}=\widehat{DAM}=\widehat{MND}=90^0\)

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

Bình luận (0)
KA
10 tháng 10 2021 lúc 22:48

Trả lời:

1: Xét tứ giác AMND có 

ˆADN=ˆDAM=ˆMND=900ADN^=DAM^=MND^=900

Do đó: AMND là hình chữ nhật

2: Xét tứ giác AKBD có 

M là trung điểm của đường chéo KD

M là trung điểm của đường chéo AB

Do đó: AKBD là hình bình hành

Chúc bạn học tốt nhé.

Bình luận (0)
VN
Xem chi tiết
VB
Xem chi tiết
RK
Xem chi tiết
LA
Xem chi tiết
NT
27 tháng 10 2021 lúc 19:58

Xét ΔABC có 

E là trung điểm của AB

N là trung điểm của AC

Do đó: EN là đường trung bình của ΔABC

Suy ra: EN//BC và \(EN=\dfrac{BC}{2}\left(1\right)\)

Xét ΔBDC có

M là trung điểm của BD

F là trung điểm của CD

Do đó: MF là đường trung bình của ΔBDC

Suy ra: MF//BC và \(MF=\dfrac{BC}{2}\left(2\right)\)

Xét ΔABD có 

E là trung điểm của AB

M là trung điểm của BD

Do đó: EM là đường trung bình của ΔABD

Suy ra: \(EM=\dfrac{AD}{2}=\dfrac{BC}{2}\left(3\right)\)

Từ (1) và (2) suy ra EN//MF và EN=MF

Từ (1) và (3) suy ra EN=EM

Xét tứ giác ENFM có

EN//MF

EN=MF

Do đó: ENFM là hình bình hành

mà EN=EM

nên ENFM là hình thoi

Bình luận (0)
NP
Xem chi tiết
NH
Xem chi tiết
OO
24 tháng 8 2016 lúc 21:39

Gọi P là trung điểm của BD. Sử dụng tính chất đường trung bình của tam giác, ta có:

\(MP=\frac{1}{2}AB\)

\(NP=\frac{1}{2}CD\)

do đó: MP + NP = \(\frac{1}{2}\) (AB + CD)

mặt khác: MN \(\le\) MP + NP

vì vậy MN \(\le\) \(\frac{\left(AB+CD\right)}{2}\)

ko bít đúng ko !!! 5654667565689857954524246464363464564545756567568534

Bình luận (0)
PV
29 tháng 7 2017 lúc 7:32

làm sao bik MN\(\le\frac{AB+CD}{2}\)

Bình luận (0)
PV
29 tháng 7 2017 lúc 7:32

lộn làn sao bik MN\(\le\)MP+NP

Bình luận (0)
HM
Xem chi tiết
H24

B C A D M N E E

Trên ta BN lấy điểm E sao cho N là trung điểm của BE .

\(\Delta NBC\)và \(\Delta NED\) có :

NC = ND ( gt ) 

\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )

NB = NE ( theo cách vẽ ) .

Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .

Theo giả thiết  MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\)                 (1) 

Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\).            (2)

Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .

Lại do \(\Delta NBC\)\(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.

Vậy tứ giác ABCD là hình thang ( đpcm ).

Bình luận (0)
LN
Xem chi tiết
NT
13 tháng 1 2024 lúc 14:00

a: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>AK=DB

mà DB=AC(ABCD là hình chữ nhật)

nên AK=AC

=>ΔAKC cân tại A

b: Xét ΔIAM có IE là phân giác

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)

mà IA=IK

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)

Xét ΔIMK có IF là phân giác

nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)

=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

nên EF//AK

Ta có: EF//AK

AK//BD(AKBD là hình bình hành)

Do đó: EF//BD

Bình luận (0)