Cho tứ giác ABCD .Gọi M , N là trung điểm AB , CD. Chứng minh MN < (AD+BC)/2
Cho tứ giác ABCD gọi M,N lần lượt là trung điểm AD,BC..Biết MN=(AB+CD)/2 chứng minh ABCD là hình thang.?
Cho hình chữ nhật ABCD ( AB AD > ), gọi M là trung điểm cạnh AB . Từ M kẻ MN ^ CD tại N . 1) Chứng minh tứ giác AMND là hình chữ nhật. 2) Gọi K là điểm đối xứng của D qua M . a) Tứ giác AKBD là hình gì? Giải thích? b) Chứng minh B là trung điểm của đoạn thẳng KC
1: Xét tứ giác AMND có
\(\widehat{ADN}=\widehat{DAM}=\widehat{MND}=90^0\)
Do đó: AMND là hình chữ nhật
2: Xét tứ giác AKBD có
M là trung điểm của đường chéo KD
M là trung điểm của đường chéo AB
Do đó: AKBD là hình bình hành
Trả lời:
1: Xét tứ giác AMND có
ˆADN=ˆDAM=ˆMND=900ADN^=DAM^=MND^=900
Do đó: AMND là hình chữ nhật
2: Xét tứ giác AKBD có
M là trung điểm của đường chéo KD
M là trung điểm của đường chéo AB
Do đó: AKBD là hình bình hành
Chúc bạn học tốt nhé.
tứ giác ABCD có AB=CD. Gọi M,N là trung điểm BC,CD. Gọi I,K là trung điể của AC,BD. chứng minh rằng MN là tia phân giác góc IMK
cho tứ giác ABCD . gọi M,N,P,Q lần lượt là trung điểm của AB , AC,CD,DA .Chứng minh rằng MN//PQ và MN=PQ
cho tứ giác abcd. gọi m, n lần lượt là trung điểm của các cạnh ab, cd. biết . chứng minh rằng nếu MN=1/2(AB+CD) thì ABCD là hình thang.
Thanks.
Cho tứ giác ABCD có AD = BC. Gọi E, F, M, N lần lượt là trung điểm AB, CD, BD, AC. Chứng minh tứ giác EMFN là hình thoi. mn giúp mik với plsss
Xét ΔABC có
E là trung điểm của AB
N là trung điểm của AC
Do đó: EN là đường trung bình của ΔABC
Suy ra: EN//BC và \(EN=\dfrac{BC}{2}\left(1\right)\)
Xét ΔBDC có
M là trung điểm của BD
F là trung điểm của CD
Do đó: MF là đường trung bình của ΔBDC
Suy ra: MF//BC và \(MF=\dfrac{BC}{2}\left(2\right)\)
Xét ΔABD có
E là trung điểm của AB
M là trung điểm của BD
Do đó: EM là đường trung bình của ΔABD
Suy ra: \(EM=\dfrac{AD}{2}=\dfrac{BC}{2}\left(3\right)\)
Từ (1) và (2) suy ra EN//MF và EN=MF
Từ (1) và (3) suy ra EN=EM
Xét tứ giác ENFM có
EN//MF
EN=MF
Do đó: ENFM là hình bình hành
mà EN=EM
nên ENFM là hình thoi
Cho tứ giác ABCD gọi M,N lần lượt là trung điểm AD,BC. Chứng minh MN=\(\frac{AB+CD}{2}\) THÌ TỨ GIÁC ABCD là hình thang
Thanks!
Cho tứ giác ABCD, gọi M,N lần lượt là trung điểm 2 cạnh AD và BC. Chứng minh MN ≤ AB+CD/2
Gọi P là trung điểm của BD. Sử dụng tính chất đường trung bình của tam giác, ta có:
\(MP=\frac{1}{2}AB\)
\(NP=\frac{1}{2}CD\)
do đó: MP + NP = \(\frac{1}{2}\) (AB + CD)
mặt khác: MN \(\le\) MP + NP
vì vậy MN \(\le\) \(\frac{\left(AB+CD\right)}{2}\)
ko bít đúng ko !!! 5654667565689857954524246464363464564545756567568534
làm sao bik MN\(\le\frac{AB+CD}{2}\)
Bài 1. Cho tứ giác ABCD . Gọi M, N lần lượt là trung điểm của AB , CD . Biết MN = \(\frac{AD+DE}{2}\). Chứng minh tứ giác ABCD là hình thang .
Trên ta BN lấy điểm E sao cho N là trung điểm của BE .
\(\Delta NBC\)và \(\Delta NED\) có :
NC = ND ( gt )
\(\widehat{BNC}=\widehat{DNE}\)( hai góc đối đỉnh )
NB = NE ( theo cách vẽ ) .
Do đó \(\Delta NBC=\Delta NED\)( c.g.c ) , suy ra DE = BC .
Theo giả thiết MN = \(\frac{AD+BC}{2}\), vì thế suy ra MN = \(\frac{AD+DE}{2}\) (1)
Mặt khác trong tam giác ABE thì MN là đường trung bình của tam giá đó nên MN = \(\frac{AE}{2}\). (2)
Từ (1) và (2) suy ra : AE = AD + DE . Đẳng thức này chỉ xảy ra khi ba điểm A,D,E thẳng hàng .
Lại do \(\Delta NBC\)= \(\Delta NED\)nên \(\widehat{BCD}=\widehat{EDC}\)do đó DE // BC ( hai góc ở vị trí so le trong bằng nhau ) , từ đó suy ra AD // BC.
Vậy tứ giác ABCD là hình thang ( đpcm ).
Cho hình chữ nhật ABCD(AB>AD), gọi M là trung điểm cạnh AB. Từ M kẻ MN vuông góc với CD tại N( N thuộc CD)
a, Trên tia DM lấy điểm K sao cho M là trung điểm của đoạn thẳng DK. Chứng minh tứ giác ADBK là hình bình hành và tam giác AKC cân.
b,Gọi I là trung điểm của AK. Tia phân giác của góc AIM cắt AM tại E, tia phân giác của góc KIM cắt MK ở F. Chứng minh EF song song với BD.
a: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>AK=DB
mà DB=AC(ABCD là hình chữ nhật)
nên AK=AC
=>ΔAKC cân tại A
b: Xét ΔIAM có IE là phân giác
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)
mà IA=IK
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)
Xét ΔIMK có IF là phân giác
nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)
=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
nên EF//AK
Ta có: EF//AK
AK//BD(AKBD là hình bình hành)
Do đó: EF//BD