Giải hpt:
2x + y = 5
4x - y = 7
Giải hpt bằng pp đặt ẩn phụ
x/(x-3) + 3y/(y-1) = 5
4x/(x-3) - y/(y-1) = 7
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne3\\y\ne1\end{matrix}\right.\)
Đặt `(x)/(x-3)` = a, `(y)/(y-1)` = b
\(\text{Hệ}\Leftrightarrow\left\{{}\begin{matrix}a+3b=5\\4a-b=7\end{matrix}\right.\\ \Leftrightarrow...\\ \Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{x-3}=2\\\dfrac{y}{y-1}=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2x-6\\y=y-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=6\\-1=0\left(vô.lí\right)\end{matrix}\right.\)
Vậy hpt vô nghiệm
cho hpt mx + y=3 ,2x - y = 7
a. giải hpt trên vs m=3
b. tìm m để hpt có 1 nghiệm là (3;1)
c. tìm m để hpt có 1 nghiệm là (4;1)
a) m = 3 thì hệ trở thành \(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}6x+2y=6\left(1\right)\\6x-3y=21\left(2\right)\end{cases}}\)
\(\left(1\right)-\left(2\right)\Leftrightarrow5y=-15\Leftrightarrow y=-3\)
Từ đó suy ra \(x=2\)
Vậy với m = 3 thì hệ có 1 nghiệm (2;-3)
b) HPT không thể có nghiệm (3;1)
c) HPT có nghiệm (4;1) thì \(4m+1=3\Leftrightarrow m=\frac{1}{2}\)
giải hpt \(\int^{\frac{x-y}{7}+\frac{2x+y}{17}=7}_{\frac{4x+y}{5}+\frac{y-7}{19}=15}\)
khử mẫu rút gọn là ra dạng thường thôi bạn ạ
umk mk ngại tính nên đăng cho nhanh hihi
giải hpt
\(\left\{{}\begin{matrix}\frac{4}{2x+y}+\frac{1}{3x-y}=2\\4x+12=7\left(2x+y\right)\left(3x-y\right)\end{matrix}\right.\)
Cho hệ phương trình {2x + y = 5m -1 và x - 2y=2 a) Giải HPT với m = 1 b) Tìm m để HPT có nghiệm ( x ; y) thoả mãn 2x - y = 3
Giải hpt sau
\(\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-3y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(2x^2+y\right)\left(x+y\right)+x\left(2x+1\right)=7-2y\\x\left(4x+1\right)=7-3y\end{matrix}\right.\left(I\right)}\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2x^2y+xy+y^2+2x^2+x+2y=7\\4x^2+x+3y=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2+2x^2+x+2y-4x^2-x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(4x+1\right)+3y=7\\2x^3+xy+2x^2y+y^2-2x^2-y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\x\left(2x^2+y\right)+y\left(2x^2+y\right)-\left(2x^2+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\\\left(2x^2+y\right)\left(x+y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+x+3y=7\left(1\right)\\\left[{}\begin{matrix}2x^2=-y\\y=1-x\end{matrix}\right.\end{matrix}\right.\)
Xét TH1:\(2x^2=-y\) (vô lý) =.> Loại
Xét TH2: y=1-x
Thay \(y=1-x\) vào (1) ta được :
(1)\(\Leftrightarrow4x^2+x+3\left(1-x\right)=7\)
\(\Leftrightarrow4x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{17}}{4}\\x_2=\dfrac{1-\sqrt{17}}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x1=\dfrac{1+\sqrt{17}}{4}\\y1=\dfrac{3-\sqrt{17}}{4}\end{matrix}\right.\\\left\{{}\begin{matrix}x2=\dfrac{1-\sqrt{17}}{4}\\y2=\dfrac{3+\sqrt{17}}{4}\end{matrix}\right.\end{matrix}\right.\)
KL: phương trình (I) có 2 nghiệm là (x;y)=........
giải hpt\(\hept{\begin{cases}x^2+2xy-2x-y+1=0\\3x^2+xy+4x-y-7=0\end{cases}}\)
\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)
\(\Rightarrow2x^2-xy+6x+y-8=0\)
\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)
Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)
Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra
Giải hpt 2x-y=5 và -3x +y=3
\(\left\{{}\begin{matrix}2x-y=5\\-3x+y=3\end{matrix}\right.\)
cộng từng vế của pt ta có:
\(\Leftrightarrow\left\{-x=8\right\}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\2x-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\2\left(-8\right)-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\-16-y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\-y=21\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=-21\end{matrix}\right.\)
Vậy hpt có hai nghiệm \(x=-8\) và \(y=-21\)
Giải hpt sau: \(\left\{{}\begin{matrix}\sqrt{x^2+2x+6}=y+1\\x^2+xy+y^2=7\end{matrix}\right.\)
ĐK: \(y\ge-1\)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}x^2+2x+6=y^2+2y+1\\\dfrac{1}{4}\left[3\left(x+y\right)^2+\left(x-y\right)^2\right]=7\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+2\right)=-5\\3\left(x+y\right)^2+\left(x-y\right)^2=28\end{matrix}\right.\)(1)
đặt \(\left\{{}\begin{matrix}t=x+y\\u=x-y\end{matrix}\right.\) hpt (1) trở thành:
\(\left\{{}\begin{matrix}u\left(t+2\right)=-5\\3t^2+u^2=28\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t=-1\\u=-5\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}t=3\\u=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x-y=-5\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+y=3\\x-y=-1\end{matrix}\right.\)
giải các hệ trên ta đc:
\(\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy.....