Những câu hỏi liên quan
SM
Xem chi tiết
HP
1 tháng 9 2021 lúc 15:33

1.

\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x}\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x-15\sqrt{x}}{x-9}\)

Bình luận (0)
HP
1 tháng 9 2021 lúc 15:35

2.

\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)

\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3\sqrt{x}+9+2\sqrt{x}-6+x-5\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x}{x-9}\)

Bình luận (0)
HP
1 tháng 9 2021 lúc 15:37

3.

\(C=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

Bình luận (0)
NT
Xem chi tiết
NT
10 tháng 7 2022 lúc 20:35

\(A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\right):\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{3x-9\sqrt{x}+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{3x-6\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)

Bình luận (0)
AQ
Xem chi tiết
JP
Xem chi tiết
NM
18 tháng 10 2021 lúc 15:19

\(Q=\dfrac{\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x-1-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ Q=\dfrac{-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\\ Q=\dfrac{-6\sqrt{x}+1+8\sqrt{x}+24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ Q=\dfrac{2\sqrt{x}+25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

Bình luận (0)
AK
Xem chi tiết
NT
16 tháng 8 2023 lúc 9:02

a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)

\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)

b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)

\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)

c: \(C=x-4+\left|x-4\right|\)

=x-4+x-4

=2x-8

Bình luận (0)
AQ
Xem chi tiết
AT
30 tháng 7 2021 lúc 16:37

a) \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\dfrac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-1\right):\dfrac{9-x+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3}{\sqrt{x}+3}:\dfrac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=-\dfrac{3}{\sqrt{x}+3}.\dfrac{\sqrt{x}+3}{-\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

b) \(\sqrt{x}=\sqrt{7-4\sqrt{3}}=\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2-\sqrt{3}\right|=2-\sqrt{3}\)

Thế vào B \(\Rightarrow B=\dfrac{3}{2-\sqrt{3}-2}=\dfrac{3}{-\sqrt{3}}=-\sqrt{3}\)

Bình luận (0)
NT
31 tháng 7 2021 lúc 0:45

a) Ta có: \(B=\left(\dfrac{x-3\sqrt{x}}{x-9}-1\right):\left(\dfrac{9-x}{x+\sqrt{x}-6}+\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)

\(=\dfrac{x-3\sqrt{x}-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{-3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{-x+4\sqrt{x}-4}\)

\(=\dfrac{-3\left(\sqrt{x}-2\right)}{-\left(\sqrt{x}-2\right)^2}=\dfrac{3}{\sqrt{x}-2}\)

Bình luận (0)
NT
31 tháng 7 2021 lúc 0:47

b) Thay \(x=7-4\sqrt{3}\) vào B, ta được:

\(B=\dfrac{3}{2-\sqrt{3}-2}=-\sqrt{3}\)

Bình luận (0)
DN
Xem chi tiết
NT
23 tháng 4 2023 lúc 14:28

\(=\dfrac{3\sqrt{x}-x+2x}{9-x}:\dfrac{\sqrt{x}-1-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{-\sqrt{x}+5}\)

\(=\dfrac{x}{\sqrt{x}-5}\)

Bình luận (0)
TN
Xem chi tiết
NT
5 tháng 7 2021 lúc 21:06

a) Ta có: \(P=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)

\(=\left(\dfrac{x+2\sqrt{xy}+y}{xy}\right):\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}\cdot\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

Bình luận (0)
LH
5 tháng 7 2021 lúc 21:11

a) Đk:\(x>0;y>0\)

\(P=\left[\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}.\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{x\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}+\sqrt{y}\right)}{x\sqrt{xy}+y\sqrt{xy}}\)

\(=\left[\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right]:\dfrac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(x+y\right)}\)

\(=\dfrac{2\sqrt{xy}+x+y}{xy}:\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{xy}.\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)

b) \(xy=16\Leftrightarrow x=\dfrac{16}{y}\)

\(P=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=\dfrac{1}{\sqrt{\dfrac{16}{y}}}+\dfrac{1}{\sqrt{y}}=\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\)

Áp dụng AM-GM có:

\(\dfrac{\sqrt{y}}{4}+\dfrac{1}{\sqrt{y}}\ge2\sqrt{\dfrac{\sqrt{y}}{4}.\dfrac{1}{\sqrt{y}}}=1\)

\(\Rightarrow P\ge1\)

Dấu "=" xảy ra khi \(y=4\Rightarrow x=4\)

Vậy x=y=4 thì P đạt GTNN là 1

Bình luận (0)
TN
Xem chi tiết
AT
30 tháng 6 2021 lúc 9:25

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2x}{9-x}\right):\left(\dfrac{\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\left(x>0,x\ne9\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2x}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)+2x}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1-2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}:\dfrac{7-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{7-\sqrt{x}}=\dfrac{x}{\sqrt{x}-7}\)

\(B=\left(\dfrac{1}{x+\sqrt{x}}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\left(x>0,x\ne1\right)\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}+1\)

\(=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}+1=-\dfrac{\sqrt{x}+1}{\sqrt{x}}+1\)

\(=\dfrac{\sqrt{x}-\sqrt{x}-1}{\sqrt{x}}=-\dfrac{1}{\sqrt{x}}\)

Bình luận (0)