CMR nếu a/b=b/c=c/a thì a=b=c
CMR: a) Nếu a/b >1 thì a/b > a+c/b+c
b) Nếu a/b <1 thì a/b < a+c/b+c
a) Cho \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) CMR: \(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\)
b) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì : \(\dfrac{a}{b}\)=\(\dfrac{3a+2c}{3b+2d}\)
c) CMR: Nếu \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì \(\dfrac{7a^2+3ab}{11a^2-8b^2}\) = \(\dfrac{7c^2+3cd}{11c^{2^{ }}-8d^2}\)
\(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
\(\dfrac{a}{c}\) = \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{c}\) = \(\dfrac{5a+3b}{5c+3d}\) (1)
\(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\) (2)
Kết hợp (1) và (2) ta có:
\(\dfrac{5a+3b}{5c+3d}\) = \(\dfrac{5a-3b}{5c-3d}\)
⇒ \(\dfrac{5a+3b}{5a-3b}\) = \(\dfrac{5c+3d}{5c-3d}\) (đpcm)
b; \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)
\(\dfrac{a}{b}\) = \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)
Bài1:CMR từ tỉ lệ thức a/b=c/d suy ra tỉ lệ thức 5a+4b/5a-4b=5c+4d/5c-4d
Bài 2: a)CMR nếu a/b=c/d thì a^2+b^2/b^2+c^2=a/c b)Nếu a/b=b/c=c/d thì(a+b-c/b+c-d)^3=a/d
CMR nếu (a-b-c)+(-a+b-c)=-(a-b-c)thì a=b+c
Cho a, b, c thỏa man 1/a=1/b=1/c
a) Cho a=1. Tính b,c
b) CMR nếu a, b, c đôi một khác nhau thì a2.b2.c2=1
c) CMR nếu a, b, c >0 thì a=b=c
bạn lớp 7 mà học kém quá nhỉ
dễ ot
b,c=1
CMR: Nếu a/b= b/c=c/a thì a=b=c
Cmr: nếu a/b=b/c=c/a thì a=b=c
Theo t/c dãy tỉ số = nhau:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> a/b = b/c = c/a = 1
=> a=b; b=c; c=a
=> a=b=c (Đpcm).
CMR: nếu (a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d) thì a/c= b/d
Cho a, b,c thỏa mãn a + 1/b = b + 1/c = c + 1 /a
a) Cho a = 1. Tìm b, c
b) CMR nếu a, b ,c đôi một khác nhau thì a2.b2.c2 =1
c) CMR nếu a, b, c >0 thì a= b =c
Giải rõ nha các bạn !!!