cho A = 102011 + 102012 + 102013 + 102014 + 16. CMR : A ko phải là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A= 102012 + 102011+ 102010 +102009 Chứng minh A không phải là số chính phương
Cho A= 102012 + 102011+ 102010 +102009 Chứng minh A không phải là số chính phương
Ai trả lời được cho tớ bít nhé iu mọi người nhìu!
Chả lời đúng tui t i c k (Ghép các chữ ấy lại)
A=102012+1/102011+1 và B=102011+1/102010+1
\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)
10^2012+10>10^2011+10
=>9/10^2012+10<9/10^2011+10
=>-9/10^2012+10>-9/10^2011+10
=>A>B
cho A = 102012 + 102011 + 102010 + 102009 + 8
Sửa đề: Chứng mình chia hết 24
Tách: 24=8.3
⇒3 (1)
8 (Vì: 0088) (2)
Từ (1) và (2) ⇒A24 Vì: (3,8)
⇒đpcm
tham khảo
https://olm.vn/hoi-dap/detail/48844794829.html
A=10 2012+10 2011+10 2010+10 2009+8
= 100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
= (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8
=12
CMR : A = 1! + 2!+ 3! +...+100! ko phải là số chính phương
CMR : A = 1! + 2!+ 3! +...+100! ko phải là số chính phương
Một số chính phương khi chia cho 5 không có số dư là 3
- Ý anh/chị là vậy này bạn:
-Ta có: A=1!+2!+3!+...+100!=(1!+2!+3!+4!)+(5!+...+100!)
=33+(5!+...+100!) chia 5 dư 3.
- Mà số chính phương luôn có chữ số tận cùng là 0;1;4;5;6;9 nên luôn chia 5 dư 0 hoặc 1 hoặc 4.
=> A không phải là số chính phương.
\(A=10^2011=10^2012+10^2013+10^2014+10^2015+16 \)
CMR A chia hết 48 và A ko phải số chính phương
CMR : A = 1! + 2!+ 3! +...+100! ko phải là số chính phương
A=1!+2!+3!+...+100! có tận cùng là 3 nên ko phải là số chính phương
cho a ko phải là một số chính phương. cmr \(\sqrt{a}\)là mọt số vô tỉ