Tìm các số nguyên dương x , y thoả mãn
X^2 = 2x(x-y) + 2y-x+2
Tìm các số nguyên dương x,y thoả mãn \(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)
tìm điều kiện của K để A chia hết cho 16 biết A=K ^4+2^ 3-16k^ 2-2k -15
Ta có: \(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)(1)
Vì x > 0 nên \(\left(1\right)\Leftrightarrow x^2=2x\left(x-y\right)+2y-x+2\)
\(\Leftrightarrow x^2-2x^2+2xy-2y+x=2\Leftrightarrow\left(1-x\right)\left(x-2y\right)=2\)
Do x, y là số nguyên nên ta có bảng sau:
Mà x, y dương nên có các cặp số nguyên (x; y) thỏa mãn là (2; 2) và (3; 2)
Tìm tất cả các cặp số nguyên dương (x;y) thoả mãn
2x^2-xy-x-2y+1=0
tìm hết tất cả các bộ số nguyên dương (x;y) thoả mãn
x^2+2y^2-3xy+2x-4y+3=0
\(x^2+2y^2-3xy+2x-4y+3=0\)
\(\Leftrightarrow4x^2+8y^2-12xy+8x-16y+12=0\)
\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)-y^2+8x-16y+12=0\)
\(\Leftrightarrow\left(2x-3y\right)^2+4\left(2x-3y\right)+4-\left(y^2-4y+4\right)+6=0\)
\(\Leftrightarrow\left(2x-3y+2\right)^2-\left(y-2\right)^2+6=0\)
\(\Leftrightarrow\left(2x-3y+2-y+2\right)\left(2x-3y+2+y-2\right)=-6\)
\(\Leftrightarrow\left(2x-4y+4\right)\left(2x-2y\right)=-6\)
\(\Leftrightarrow\left(x-2y+2\right)\left(x-y\right)=-\frac{3}{2}\)
Đến đây ta thấy vô lý
P/S:is that true ?
=-12 mà CTV
Tìm các số nguyên dương x, y thỏa mãn
x³+y và y³+x đều chia hết cho x²+y²
Tìm các số nguyên x và y thoả mãn :x^3-2x^2=y^3-2y^2
Tìm các cặp số nguyên dương (x;y) thoả mãn 1 trong các điều kiện sau: 1)2x+2y-3 chia hết cho xy
2)x+2y+1 chia hết cho xy
Cho các số dương x, y thoả mãn x + y = 1. Tìm giá trị nhỏ nhất của\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)
Theo bđt Cauchy schwarz dạng Engel
\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)
Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ)
\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)
Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)
\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Cho mình hỏi bạn Nguyễn Huy Tú, hãy giải thích cho mình hiểu về bất đẳng thức Cauchy schawarz (Định lý, chứng minh,..). Đây là lần đầu tiên mình được nghe tên về bất đẳng thức này nên mong bạn giải thích dễ hiểu. Chúc bạn ngày một thành công hơn trong con đường học vấn của mình !
Tìm các số nguyên thoả mãn x y
2x^2-xy-x-2y+1=0
Tìm các số nguyên dương x, y thoả mãn:
a)\(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)
b)\(x^3-y^3-1=3xy\)
c)\(x^3+1=4y^2\)